Te Tohu O Te Ora O Ngati Awa

30A HUNA ROAD, COASTLANDS WHAKĀTANE PRELIMINARY AND DETAILED SITE INVESTIGATION REPORT

18 MAY 2023

Question today Imagine tomorrow Create for the future

30A HUNA ROAD, COASTLANDS WHAKĀTANE PRELIMINARY AND DETAILED SITE INVESTIGATION REPORT

Te Tohu O Te Ora O Ngati Awa

WSP Whakatāne 13 Louvain Street Whakatāne 3120, New Zealand +64 7 308 0139 wsp.com/nz

REV	DATE	DETAILS
А	18/05/2023	Issue to Client

	NAME	DATE	SIGNATURE
Prepared by:	J. Cross and L. Shotliff	18/05/2023	dishettiy
Reviewed by:	Stephen Thomson	18/05/2023	Digitally signed by Thomson, Stephen (sth191) DN: cn=Thomson, Stephen (sth191), ou=Active, email=Stephen.Thomson@wsp.com Reason: Signed as Reviewer Date: 2023 05:61 61 64:06 14 2007 (sth191)
Approved by:	Stephen Thomson	18/05/2023	Digitally signed by Thomson, Stephen (sh191) DN: cn=Thomson, Stephen (sh191), u=Active, email=Stephen.Thomson@wsn.com
			Reason: Signed as Approver (sth191) Date: 2023.05.18 15:50:36 +12'00'

This report ('Report') has been prepared by WSP exclusively for Te Tohu o Te Ora Ngati Awa ('Client') in relation to the assessment of contaminated land risks relating to the proposed residential development of the Site ('Purpose') and in accordance with with the signed Short Form Agreement with the Client 21st March 2023. The findings in this Report are based on and are subject to the assumptions specified in the Short Form Agreement with the Client 21st March 2023. WSP accepts no liability whatsoever for any reliance on or use of this Report, in whole or in part, for any use or purpose other than the Purpose or any use or reliance on the Report by any third party.

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	
1	INTRODUCTION	5
1.1	PROJECT BACKGROUND	5
1.2	REGULARTORY FRAMEWORK	5
1.3	PURPOSE	5
1.4	SCOPE OF WORKS	5
1.5	STATEMENT OF QUALIFICATION	6
2	SITE AND ENVIRONMENTAL SETTING	8
2.1	SITE INDENTIFICATION/LOCATION	8
2.2	GEOLOGY	8
2.3	HYDROGEOLOGY AND SURFACE WATER	8
2.4	TOPOGRAPHY	9
3	DESKTOP REVIEW	10
3.1	HISTORICAL AERIAL REVIEW	10
3.2	WDC PROPERTY FILE	11
3.3	BOPRC HAIL SITE VIEWER	11
3.4	BOPRC HAIL SITE CONTAMINATION VIEWER	12
4	SITE CHARACTERISATION	13
4.1	HAIL ACTIVITY DISCUSSION	13
4.2	PRELIMINARY CONCEPTUAL SITE MODEL	13
5	DETAILED SITE INVESTIGATION	15
5.1	SAMPLING DESIGN AND RATIONALE	15
5.2	FIELDWORK	
5.3	LABORATORY ANALYSIS	15
5.4	BASIS FOR GUIDELINE VALUES	16
5.5	SUBSURFACE CONDITIONS	16

usp

6	ANALYTICAL RESULTS	
7	QUALITY ASSESSMENT AND QUALITY CONTROL	
8	ANALYTICAL RESULTS AND DISCUSSION	20
8.1	HUMAN HEALTH CRITERIA	20
8.2	BACKGROUND CRITERIA	20
9	CONCLUSIONS	21
9.1	HAIL SITES	21
9.2	UNCERTAINTIES AND DATA GAPS	21
9.2.1	SAMPLE DEPTH	21
9.3	APPLICABILITY OF NES-CS	21
9.4	APPLICABILITY OF WDC-OP	21
10	RECOMMENDATIONS	
11	LIMITATIONS	23
12	REFERENCES	25
APP[ENDIX A – FIGURES	27
APP[ENDIX B – HISTORICAL AERIAL IMAGES	28
APP[ENDIX C – REGULATORY ENQUIRY	29
APP[ENDIX D – HAND AUGER LOGS	
APP[ENDIX E – LAB RESULTS	31

EXECUTIVE SUMMARY

WSP New Zealand Limited (WSP) have undertaken a Preliminary Site Investigation (PSI) and Detailed Site Investigation (DSI) on behalf of the Te Tohu O Te Ora O Ngati Awa for 30A Huna Road, Coastlands, Whakatāne (Figure 1, Appendix A) (the "site").

It is understood by WSP that Te Tohu O Te Ora O Ngati Awa are intending to develop the site into a residential area comprised of up to 70 papakāianga dwellings, multiple common areas, including a homestead, and various other residential/community features, such as māra kai. To complete the residential development soil disturbance, excavation, and potential re-use and disposal of soil will be required.

This PSI and DSI was undertaken to assess the suitability of the site for the proposed development, in relation to potential contamination issues. For a proposed development, the completion of a PSI is a requirement if it is more likely than not that any of the Ministry for the Environment (MfE) Hazardous Activities and Industries List (HAIL) (MfE, 2022) activities have been undertaken on the Site. The PSI is required to determine if the Resource Management Act (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES-CS) (NES-CS, 2011) will apply.

Additionally, the completion of the PSI and a DSI is required to inform development implications applicable under the Whakatāne District Council Operative Plan (WDC-OP) (WDC, 2017). Under the WDC-OP, soil testing is required prior to the subdivision and development of sites that have a history of land use that could have resulted in contamination of the soil to confirm that the land is fit for the intended use. Furthermore, if land is found to be contaminated, it is required that it is managed so that significant risk to human health is avoided, remedied, or mitigated for its proposed use.

The PSI review identified two Ministry for the Environment (MfE) Hazardous Activities and Industries List (HAIL) activities associated with nearby properties, with the potential to impact soil quality at the site:

- HAIL A10: Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds.
 - 30 m southeast an orchard was present from circa 2002 to 2018, when the area underwent redevelopment for residential use.
 - 90 m southwest a strawberry farm has been present since circa 1970.

Given the potential for pesticides spray associated with these HAIL sites to have impacted the site, the following HAIL activity is considered to apply to the site:

• HAIL H: Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment.

Therefore, a DSI was undertaken at the site, involving the collection of 16 shallow soil samples and analysis for potential contaminants of concern; heavy metals and pesticides. No soil results were reported above adopted background (BOPRC, 2011) or human health assessment criteria (residential (10% produce)(MfE, 2011)).

Based on the reported soil results, the Site is not considered to comprise land containing elevated levels of contaminants and HAIL H is not considered to apply to the site. Therefore, the NESCS **does not** to apply to the Site under Regulation 5 (9) of the NES-CS.

The WDC-OP also **does not** apply to the Site given the findings of the DSI.

Based on the findings of this investigation, soil on site can be considered as cleanfill material. Therefore, it is applicable for reuse on site. If material is required to be disposed of off-site during the proposed development, acceptance may be dependent on the receiving facility and will need prior approval to ensure the material meets the requirements of the receiving facility.

1 INTRODUCTION

1.1 PROJECT BACKGROUND

WSP New Zealand Limited (WSP) have undertaken a combined Preliminary Site Investigation (PSI) and Detailed Site Investigation (DSI) on behalf of Te Tohu O Te Ora O Ngati Awa for their property at 30A Huna Road, Coastlands, Whakatāne (Appendix A, Figure 1) (the "Site"). It is understood by WSP that Te Tohu O Te Ora O Ngati Awa are intending to develop the site into a residential area comprised on up to 70 papakāianga dwellings, multiple common areas, including a homestead, and various other residential/community features, such as māra kai. To complete the residential development soil disturbance, excavation, and potential re-use and disposal of soil will be required.

1.2 REGULARTORY FRAMEWORK

Disturbance of soil associated with developments on potentially contaminated land is a regulated activity under the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES-CS, 2011).

Additionally, the completion of the PSI and a DSI is required to inform development implications applicable under the Whakatāne District Council Operative Plan (WDC-OP) (WDC, 2017). Under the WDC-OP, soil testing is required prior to the subdivision and development of sites that have a history of land use that could have resulted in contamination of the soil to confirm that the land is fit for the intended use. Furthermore, if land is found to be contaminated, it is required that it is managed so that significant risk to human health is avoided, remedied, or mitigated for its proposed use.

Both frameworks require a risk assessment to assess the likelihood of site contamination and determine if the development may result in adverse effects to human health or the environment, whether they can be remediated or managed, or whether further investigative work is required.

All assessments and related reports should be carried out in accordance with the Ministry for the Environment (MfE), Contaminated Land Management Guidelines (CLMG).

1.3 PURPOSE

The purpose of this combined PSI and DSI is to determine whether it is more likely than not that any of the Ministry for the Environment (MfE) Hazardous Activities and Industries List (HAIL) (MfE, 2022) activities have been undertaken on the site, assess the implications under the NES-CS and the WDC-OP, and make recommendations for further assessment (if required).

1.4 SCOPE OF WORKS

This combined PSI and DSI report was prepared in accordance with the MfE Contaminated Land Management Guidelines (CLMG) No.1: Reporting on Contaminated Sites in New Zealand (MfE, 2021a) and comprised a:

- Preliminary Site Investigation:
 - Desktop review of environmental setting from publicly available maps and databases
 - Review of information relating to geological, hydrological, and topographic conditions of the site
 - Review of historical information and evidence from:
 - Historical aerial photography
 - Whakatāne District Council property files
- Detailed Site Investigation:
 - Collection of 16 soil samples from 16 locations across the proposed site
 - Analysis of selected representative soil samples for potential contaminants of concern, including heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, and zinc) and a broad suite of pesticides (multiresidue analysis).
 - Site characterisation indicating determination of HAIL status
 - Determination of the applicability of the NES-CS and WDC-OP to the Site
 - Provision of recommendations for future works.

1.5 STATEMENT OF QUALIFICATION

WSP confirms that this PSI meets the requirements of the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (the NESCS) (NES-CS, 2011) because it has been:

- Reported on in accordance with the current edition of Contaminated Land Management Guidelines No1 – Reporting on Contaminated Sites in New Zealand (MfE, 2021a), and
- The report has been reviewed and approved by a Suitably Qualified and Experienced Practitioner (SQEP).

Evidence of the qualifications and experience of the SQEP(s) who have done this investigation and reviewed this report are provided in Table 1-5 below.

Table 1-5 Suitably Qualified and Experienced Practitioner details

ITEM	DETAILS		
Author			
Name	Jade Cross		
Job title	Graduate Environmental Scientist		
Years' industry experience	0.5		
Author			
Name	Laurence Shotliff		
2-34569.01	WSP 20 M 2027		

ITEM	DETAILS
Job Title	Environmental Scientist
Years' industry experience	4
Reviewer	
Name	Stephen Thomson
Job title	Principal Environmental Scientist
Years' industry experience	26

This document has been prepared exclusively for the To Tohu o Te Ora Ngati Awa by WSP New Zealand Limited as a deliverable under the contract between WSP and To Tohu o Te Ora Ngati Awa dated 21st March 2023. This document remains subject to the terms and conditions detailed in that contract, including but not limited to any limitations therein. Any use or any reliance on this document by any third party is at its sole risk without recourse to WSP. Third parties must make their own enquiries and obtain independent advice in relation to any matter dealt with or any conclusion expressed in this document.

2 SITE AND ENVIRONMENTAL SETTING

2.1 SITE INDENTIFICATION/LOCATION

The Site is located at 30A Huna Road, approximately 3 km northwest of Whakatāne (see Figure 1, Appendix A). The following site details in Table 2-1 were acquired using the WDC mapping service (WDC , 2023), and Land Information New Zealand (LINZ) NZ Property Tile Map (LINZ , 2023).

ITEM	DESCRIPTION
Address	30A Huna Road, Coastlands, Whakatāne 3191
Legal Description	Lot 28B No. 6B Sec. 2 Parish of Rangitaiki
Titles	332805
Owner	Te Tohu O Te Ora O Ngati Awa
Approximate Site Area	3 hectares
Territorial Authority	Whakatāne District Council
Current Site Use	The site is not currently in use
Proposed Site Use	Residential development comprising up to 70 papakāianga dwellings, multiple common areas, and various other residential/community features

Table 2-1 Summary of Site Details

2.2 GEOLOGY

A review of the GNS Geology Web Map 1:250,000 scale (GNS, 2023) indicates that the site is underlain by Holocene swamp deposits consisting of soft, dark brown to black, organic mud, muddy peat and woody peat with minor overbank sand, silt, and mud.

2.3 HYDROGEOLOGY AND SURFACE WATER

The BOPRC Water Catchment – Surface Drainage Map (BOPRC, 2023a) indicates that the Site is located within the Whakatāne Catchment, and above a coastal aquifer.

There are several surface water bodies in proximity to the Site. Aerial images indicate that the nearest surface water body is the Kopeopeo Canal, located approximately 330 m south of the site. The Kopeopeo Canal was contaminated between the 1950s and late 1980s as a result of stormwater discharges from a former sawmill downstream, which treated timber using Pentachlorophenol (PCP) (BOPRC, 2023b; WSP Golder, 2020). The dioxins posed a serious risk to 2-34569.01 WSP 30A HUNA ROAD, COASTLANDS WHAKĂTANE 29 May 2023 PRELIMINARY AND DETAILED SITE INVESTIGATION REPORT 8 Te Tohu O Te Ora O Ngati Awa

human health, especially for Ngāti Awa who harvest tuna (eels) from the canal. Consequently, a 5.1 km stretch of the canal was remediated. Investigation for the remediation of the canal was conducted between 2005 and 2015. The remediation of the canal was undertaken between 2016 and 2019, with the project now in the monitoring phase (BOPRC, 2023b; WSP Golder, 2020). Due to the remediation of the canal being completed in 2019, and its distance to the Site, it is unlikely that there has been contaminant crossover to the Site.

Aerial images also show four large, manmade ponds located approximately 900 m east of the site. These are sewage treatment ponds relating to the Whakatane Sewage Treatment Plant operated by Whakatane District Council.

Additionally, the Whakatāne District Council mapping tool (WDC , 2023) identifies the Whakatāne River located approximately 1.3 km southeast of the site.

2.4 TOPOGRAPHY

The WDC mapping service (WDC, 2023) has a contour overlay. The overlay indicates that the site is situated at approximately 4 m above mean sea level (amsl). Land immediately adjacent to the north lies at 2m amsl and to the south rises to 8 amsl.

Site observations made during the site work of the DSI noted that the site forms a shallow valley, land rising gently to the south at the southern border, and to the north at the northern border. At the northern boundary, the site slopes gently downwards again towards the adjacent agricultural fields adjacent to the north. Observations are generally in line with the WDC mapping service.

3 DESKTOP REVIEW

3.1 HISTORICAL AERIAL REVIEW

WSP has reviewed historical aerial photographs sourced from Retrolens (2023) and Google Earth Pro (2023). A summary of observations is provided in Table 3-1 with aerial photographs presented in Appendix B.

Table 3-1: Summary of Historical Aerial Photography Review

YEAR (SOURCE)	SITE OBSERVATIONS	SURROUNDING ENVIRONMENT
1944 (Retrolens)	The site is primarily grassed and has been sectioned into paddocks for agricultural use. A line of established trees follows the southern border of the site. In the north-western corner of the site a small farm outbuilding is depicted. A track follows the northern border of the site, running from Huna Road.	The immediate surrounding environment to the site is cleared, grassed areas that have been sectioned into paddocks/various fields for agricultural use. To the immediate west of the site, there is a residential building. The building is bordered by well- established trees and small outbuildings are nearby to the south of the building. To the immediate north of the site a smaller building is depicted, likely a farm outbuilding. Similarly, to the immediate south and east of the site there are residential dwellings and several smaller buildings that service the farm and land adjacent to the site. Huna Road is located west of the site.
1961 (Retrolens)	No significant change to the site or surrou	nding environment since 1944.
1971 (Retrolens)	The trees established along the southern border of the site have mostly been removed. No other significant changes to the site since 1961.	Part of the land to the immediate west of the site has changed land use and is now rugby fields.
1982 (Retrolens)	The structure in the north-western corner of the site has been removed.	Established vegetation around the residential building to the immediate west has been cleared.

YEAR (SOURCE)	SITE OBSERVATIONS	SURROUNDING ENVIRONMENT
1987 (Retrolens)	There are no significant changes to the since 1982.	West of the site, the current Paroa Rugby Club buildings have been constructed, adjacent to the Paroa rugby fields.
2002 (Google Earth Pro)	The track along the northern border of the site is no longer present and the trees established along the southern border of the site have been cleared.	Outbuildings adjacent to the residential building adjacent to the west of the site are no longer present. 30 m southeast of the site, an orchard has been established. 90 m southwest of the site a strawberry farm has been established, including a central building.
2011 (Google Earth Pro)	No significant changes to the site since 2002.	The central building of the strawberry farm has been extended.
2022 (Google Earth Pro)	No significant changes to the site since 2011.	The orchard southeast of the site has been developed into a residential area with over 30 residential buildings. No other significant changes to the surrounding environment since 2011.

3.2 WDC PROPERTY FILE

A property file for 30A Huna Road, Whakatāne was requested by WSP from WDC on 21 April 2023. WSP received a response from WDC stating that there is no information contained in the property file for 30A Huna Road as it is any empty plot of land and there have been no structures constructed on the site.

3.3 BOPRC HAIL SITE VIEWER

WSP reviewed the BOPRC HAIL Site Viewer Map for sites of interest within 250 m of the sites (BOPRC, 2023c) (see Figure 2, Appendix A). The viewer indicates that there are three verified HAIL sites located within 250 m of the site. The sites have been summarised in Table 3-2 below.

SITE ID AND CLASSIFICATION	SITE LOCATION	HAIL CATAGORY	CONTAMINANTS OF CONCERN	SITE COMMENTS
LUR-WHK-00428 At or Below Background	Approximately 30 m	HAIL A10: Persistent pesticide bulk storage or use including sport	Arsenic, lead, copper, mercury; wide range of organic compounds	The contaminants at this site are at or below background level as

Table 3-2: Summary of verified HAIL sites within 250 m of the Site

SITE ID AND CLASSIFICATION	SITE LOCATION	HAIL CATAGORY	CONTAMINANTS OF CONCERN	SITE COMMENTS
	southeast of the site	turfs, market gardens, orchards, glass houses or spray sheds.	including acidic herbicides, organophosphates, and organochlorines.	the site has been remediated and is now a residential development. Hence, it is unlikely to result in the migration of contaminants to the Site.
LUR-WHK-00427 Verified HAIL Site	Approximately 90 m southwest of the site	HAIL AIO: Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds.	Arsenic, lead, copper, mercury; wide range of organic compounds including acidic herbicides, organophosphates, and organochlorines (e.g., endosulfan on golf and bowling greens)	Strawberry farm established in 1970.
LUR-WHK-0036 Managed for Site Use	Approximately 230 m west of the site	HAIL G5: Waste disposal to land (excluding where biosolids have been used as soil conditioners)	Depends on type of waste – biological hazards (bacteria, viruses), metals, PAHs, semi- volatile organic compounds, and solvents	The site has been managed for land use. It is now part of the Paroa Rugby Club grounds. Therefore, is unlikely to result in the migration of contaminants to the Site.

3.4 BOPRC HAIL SITE CONTAMINATION VIEWER

WSP requested a Site Contamination Enquiry from BOPRC on the 5 May 2023 (BOPRC, 2023d). The enquiry response confirms that the Site is not currently registered on the BOPRC's Land Use Information Register (LUIR).

The response provided to WSP by BOPRC is included in Appendix C.

4 SITE CHARACTERISATION

4.1 HAIL ACTIVITY DISCUSSION

HAIL activity G5 230 m west of the site is not considered to pose a potential contamination risk to the site given its distance from the site and that current and historical aerial images do not show any notable activity at this location.

Two HAIL activity sites identified by BOPRC are located nearby to the site that have potential to have impacted the soil quality at the Site:

- HAIL AIO: 30 m southeast an orchard was present from circa 2002 to 2018, when development for the current residential area began.
- HAIL A10: 90 m southwest a strawberry farm has been present since circa 1970.

Given the potential for pesticides spray associated with these HAIL sites to have impacted the site, the following HAIL activity is considered to apply to the site:

• HAIL H: Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment.

Based on the desk-based study of historical land uses and activities undertaken adjacent to the site, the site is considered to meet the 'more likely than not' benchmark for applicability under NES-CS to have been or to currently be subject to contamination for adjacent HAIL activities. As such, the NES-CS applies to any ground disturbance above permitted activity levels undertaken on the site.

Furthermore, based on the desk-based study and of the evidence reviewed, the same conclusions can be reached regarding the applicability of the WDC-OP.

Potential contaminants of concern are heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, and zinc) and pesticides which are harmful to human health if identified to be at concentrations above applicable soil contaminant standards.

In order to further quantify the risks to human health associated with future ground disturbance activities on site, a DSI was undertaken, and reported herein.

4.2 PRELIMINARY CONCEPTUAL SITE MODEL

A conceptual site model (CSM) is a systematic approach in which contaminant sources, routes of exposure and environmental receptors are identified. The CSM created for the site is presented in Table 4-2.

Table 4-2: Conceptual Site Model

3	Potential historical sources of contamination have been identified ne to the site:	
	— HAIL A10: orchard located approximately 30 m southeast of site	

	 HAIL A10: strawberry farm located approximately 90 m southwest of site 				
Potentially impacted media	Impacted media are likely to be limited to shallow soils (< 0.5 m) as there have been no notable developments or excavation/soil disturbance on the site.				
Contaminants of concern	 The identified contaminants of concern comprise: Arsenic, lead, copper; wide range of organic compounds including acidic herbicides, organophosphates, and organochlorines 				
Migration pathways	 Potential migration pathways for the contaminants of concern comprise: Airborne migration of dust, vapours, or fibres Surface runoff containing impacted soil or dissolved contaminants Infiltration of contaminants in soil Migration of impacted groundwater 				
Potential exposure pathways	 Potential exposure pathways comprise: Inhalation of contaminated dust, vapours, or fibres Dermal contact with contaminated soils/water Ingestion of contaminated material Leaching of contaminants through the soil matrix 				
Potential sensitive receptors	Identified sensitive receptors comprise: — End users of the site including site workers — Site contractors (during development) — Nearby or adjoining site users and visitors				

5 DETAILED SITE INVESTIGATION

5.1 SAMPLING DESIGN AND RATIONALE

The MfE Contaminated Land Management Guideline No. 5: Site Investigation and Analysis of Soils (CLMG No. 5) (MfE, 2021b) outlines the three types of sampling patterns commonly used for the site investigations, comprising judgemental, systematic, and stratified sampling.

To achieve the sampling objectives of the DSI works, a systematic sampling pattern was adopted across the site to provide an even distribution of samples across the site and sufficient coverage of the residential development.

5.2 FIELDWORK

Prior to any intrusive works, service clearance was undertaken by the subcontractor Perry Geotech and Geoverse on 6 April 2023. Geotechnical investigations were undertaken (separate to the environmental sample collection) by Perry Geotech and Geoverse on the same day. A total of eight cone penetration tests (CPTs) (CPT01-CPT08) to depths of 20 m below ground level (bgl) and a total of eight hand augers (HA01-HA08) to depths of up to 5 m were undertaken using a manual hand auger tool. Hand auger logs of encountered ground conditions are provided in Appendix D. An aerial figure of geotechnical investigation locations taken from the geotechnical report is provided as Figure 3, in Appendix A.

Soil samples for environmental analysis were also collected on 6 April 2023. A total of 16 environmental samples (ES) (ES01-ES16) were collected from near surface soils (between 0.1 m to 0.3 m bgl) in a rough grid pattern across the site, refer to Figure 2 in Appendix A for a plan of sampled locations. Soil samples collected were taken directly from a hand trowel or hand auger by hand using dedicated nitrile gloves. All non-dedicated equipment was decontaminated between sampling locations using Decon-90[™] to minimise the potential of cross contamination between locations.

Subsurface conditions were logged, and soil samples were placed in laboratory supplied jars, leaving minimal headspace, and closed using Teflon-coated lids. All samples were stored on ice in a sealed cooler and transported to the laboratory under chain of custody.

5.3 LABORATORY ANALYSIS

Selected soil samples were submitted to R J Hill Laboratories Limited (Hill Laboratories) for analysis of determined contaminants of concern including heavy metals and pesticides. Soil samples were selected for analysis based on sample depth and field observations.

Hill Laboratories are accredited by International Accreditation New Zealand (IANZ) for the analytical suites requested.

5.4 BASIS FOR GUIDELINE VALUES

WSP have adopted the following guideline criteria to classify soil at the site during the development, handling, and ongoing/future site use. Table 5-1 below outlines selected criteria for handling and land use.

MATRIX	SOURCE GUIDELINES	CRITERIA	ANALYTES				
Human	Health		1				
Soil	Ministry for the Environment (2011). <i>Methodology for Deriving</i> <i>Standards for Contaminants in</i> <i>Soil to Protect Human Health.</i> Publication number ME 1055, June 2011 (MfE, 2011)	– Residential (10% produce)	Arsenic, cadmium, chromium, copper, lead				
	National Environmental Protection Council (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013) (NEPC, 2013). Included as NESCS does not have guideline values for the protection of human health for nickel and zinc.	— HIL-A (residential)	Nickel and zinc				
Background Criteria							
Soil	Trace Elements in Bay of Plenty Soils, BOPRC, November 2011 (BOPRC, 2011)	 Mean topsoil (0-10 cm) trace element concentrations of maize cropping sites 	Arsenic, cadmium, chromium, copper, lead, nickel, and zinc				

Table 5-1. Selection Criteria for Handling and Land Use Assessment

5.5 SUBSURFACE CONDITIONS

Subsurface conditions encountered during this investigation generally comprised a thin layer of topsoil comprising silt and sand mixtures (0 – 0.4 m bgl), underlain by predominantly fine to coarse sand mixtures, with varying fractions of silt and gravel (0.4 – 6 m bgl). These underlying deposits are generally very loose to loose from 0.6 to 2 m, increasing to medium dense between 2 to 6 m bgl, and dense with interbedded loose and very dense layers beyond 6 m bgl.

It should be noted that at some of the HA locations (HA 03, 05, and 08) a layer of fill of varying thickness was recorded underlying the topsoil; between 0.3 m to 1.15 m in thickness. The fill material generally comprised very loose to loose sand and silt mixtures with some fine gravel. Given the absence of foreign material in the fill and its similar composition to the natural material encountered, it is likely to be reworked natural material and is not considered to pose a potential contamination risk.

Groundwater was encountered during the excavation of the hand auger locations of the geotechnical investigation, ranging between 2.95 and 4.7 m bgl.

See Appendix D for copies of the hand auger logs.

.

6 ANALYTICAL RESULTS

A summary of soil results is provided in Table 6-1 below. The following analytes comprise the table:

• Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc)

The following analytes were not included in the table due to not exceeding laboratory limits:

• Pesticides

Detailed tables and laboratory reports, including chain of custody, of the soil sampling results are provided in Appendix E

Table 6-1: Summary of soil sample results

NO. OF	ANALYTE	CONCENTRATION (MG/KG)		HUMAN HEALTH-BASED CRITERIA		BACKGROUND CRITERIA		
SAMPLES		Minimum	Maximum	Adopted criteria (mg/kg)	Samples exceeding adopted criteria	Adopted criteria (mg/kg)	Samples exceeding adopted criteria	
Heavy Meta	Heavy Metals							
	Arsenic	2	5	20	-	4.9	-	
	Cadmium	<0.10	<0.10	3	-	0.29	-	
	Chromium	2	3	460	-	8.3	-	
16	Copper	<2	6	>10,000	-	10.4	-	
	Lead	2.6	4.1	210	-	9.2	-	
	Nickel	<2	<2	400	-	6.2	-	
	Zinc	15	27	8,000	-	41.1	-	

7 QUALITY ASSESSMENT AND QUALITY CONTROL

Table 7-1 summarises the field quality program undertaken for the DSI.

Table 7-1. Summary of the field quality program

ІТЕМ	DESCRIPTION
Environmental Consultant	The environmental consultant maintains Quality Assurance Systems certified to AS/NZS ISO 9001:2015. An experienced Environmental Scientist completed the field works under the supervision of a Suitably Qualified Environmental Professional (SQEP). As detailed in Table 1-2 of this report.
Procedures	All work was conducted in accordance with relevant statutory health, safety and environmental (HSE) sampling guidelines, as well as standard company HSE and environmental field procedures. Standard field sampling sheets were used. Details recorded included WSP staff and contractors present, time on/off site, weather conditions, calibration records and other observations relevant to the works.
Sampling	Collection of samples was undertaken by appropriately trained and experienced personnel following WSP standard field procedures which are based on industry accepted standard practice. Chain of custody was used to ensure the integrity of samples from collection to receipt by the laboratory.
Equipment Decontamination	Undertaken after each sampling episode where equipment used was not dedicated. Field sampling procedures conformed to WSP quality assurance/quality control (QA/QC) protocols to prevent cross contamination, preserve sample integrity, and allow for collection of a suitable data set from which to make technically sound and justifiable decisions with data of satisfactory usability.
Transportation	Samples were stored in chilled coolers on-site and during transport by the field scientist to the laboratory. Chain of custody forms were completed on- site and sent with the samples. Chain of custody forms are presented with laboratory receipts in Appendix E, and include the sampler's name, date of sampling, sample matrix, sample containers and preservation used, and analysis requested. The laboratory confirmed receipt of the samples and specified the condition on delivery and the scheduled analysis.
Reporting	Report completed in accordance with the MfE CLMG No. 1 and CLMG No.5

8 ANALYTICAL RESULTS AND DISCUSSION

8.1 HUMAN HEALTH CRITERIA

No human health criteria exceedances were reported for any soil samples submitted for analysis.

8.2 BACKGROUND CRITERIA

No background criteria exceedances were reported for any soil samples submitted for analysis.

9 CONCLUSIONS

9.1 HAIL SITES

A soil sampling investigation was undertaken by WSP at the site on 6 April 2023 to determine potential contaminant characteristics of near surface soils of the site. This was undertaken following the findings of the PSI section of the report, which indicated two HAIL sites are in the nearby vicinity of the site. An assessment of the risks to human health associated with potential contaminants of concern was required to satisfy the NES-CS.

Soil analysis results from the investigation works indicate that concentrations of contaminants were below adopted human health guidelines (residential (10% produce)) and adopted background criteria.

9.2 UNCERTAINTIES AND DATA GAPS

9.2.1 SAMPLE DEPTH

Soil samples were collected from near surface soils (between 0.1 m to 0.3 m bgl) at 16 locations across the site. No samples were taken below near surface soils given that pesticide associated contamination is most commonly concentrated in shallow soils and the site has remained undeveloped since the 1940s.

Due to no samples taken from depths greater than 0.3 m, we cannot be certain that soils greater than 0.3 m bgl are not contaminated. However, it is highly unlikely due to the undeveloped nature of the site, encountered ground conditions and soil analysis results.

9.3 APPLICABILITY OF NES-CS

Based on the reported soil results, the Site is not considered to comprise land containing elevated levels of contaminants and HAIL H is not considered to apply to the site. Therefore, the NESCS **does not** to apply to the Site under Regulation 5 (9) of the NES-CS.

9.4 APPLICABILITY OF WDC-OP

Based on WSP's review of the available evidence and the reported soil results, the same conclusions can be reached with regard to the applicability of the WDC-OP. The WDC-OP **does not** apply to the Site given that the Site is not considered to comprise of land containing elevated levels of contaminants.

10 RECOMMENDATIONS

Based on the findings of this investigation, soil on site can be considered as cleanfill material. Therefore, it is applicable for reuse on site. If material is required to be disposed of off-site during the proposed development, acceptance may be dependent on the receiving facility and will need prior approval to ensure the material meets the requirements of the receiving facility.

11 LIMITATIONS

This report (**'Report**') has been prepared by WSP New Zealand Limited (**'WSP'**) exclusively for Te Tohu O Te Ora O Ngati Awa (**'Client'**) in accordance with the signed Short Form Agreement with the Client 21st March 2023 (**'Agreement'**).

Permitted Purpose

This Report has been prepared expressly for the purpose of assessing and determining whether it is more likely than not that a HAIL activity has occurred on site through conducting a preliminary site investigation (PSI) **('Permitted Purpose')**. WSP accepts no liability whatsoever for the use of the Report, in whole or in part, for any purpose other than the Permitted Purpose. Unless expressly stated otherwise, this Report has been prepared without regard to any special interest of any party other than the Client.

WSP accepts no liability whatsoever for any use of this Report, in whole or in part, by any party other than the Client. Unless WSP agrees otherwise in writing, any use or any reliance on this Report by a third party is at its sole risk without recourse to WSP. Third parties must make their own enquiries and obtain independent advice in relation to any matter dealt with or any conclusion expressed in this Report.

Qualifications and Assumptions

The services undertaken by WSP in preparing this Report were limited to those specifically detailed in the Agreement and the Report and are subject to the scope, qualifications, assumptions, and limitations set out in the Report and/or otherwise communicated to the Client. Except as otherwise stated in the Report and to the extent that statements, opinions, facts, conclusion and/or recommendations in the Report ('Conclusions') are based in whole or in part on information provided by the Client and other parties ('Information'). The Information has not been and have not been verified by WSP and WSP accepts no liability for the reliability, adequacy, accuracy, and completeness of the Information.

The data reported and Conclusions drawn by WSP in this Report are based solely on information made available to WSP at the time of preparing the Report. The passage of time; unexpected variations in ground conditions; manifestations of latent conditions; or the impact of future events (including (without limitation) changes in policy, legislation, guidelines, scientific knowledge; and changes in interpretation of policy by statutory authorities); may require further investigation or subsequent re-evaluation of the Conclusions.

Use and Reliance

This Report should be read in its entirety and must not be copied, distributed or referred to in part only. The Report must not be reproduced without WSP's prior approval in writing. WSP will not be responsible for interpretations or conclusions drawn by the reader of the Report. This Report (or sections of the Report) must not be used as part of a specification for a project or for incorporation into any other document without WSP's agreement in writing.

Disclaimer

No warranty, undertaking or guarantee whether expressed or implied, is made with respect to the data reported or the Conclusions drawn. To the fullest extent permitted at law, WSP, its related bodies corporate and its officers, employees and agents assumes no liability and will not be liable to any third party for, or in relation to any losses, damages or expenses (including any indirect, consequential losses or damages or any amounts for loss of profit, loss of revenue, loss of opportunity to earn profit, loss of production, loss of contract, increased operational costs, loss of business opportunity, site depredation costs, business interruption or economic loss) of any kind whatsoever, suffered on incurred by a third party.

12 REFERENCES

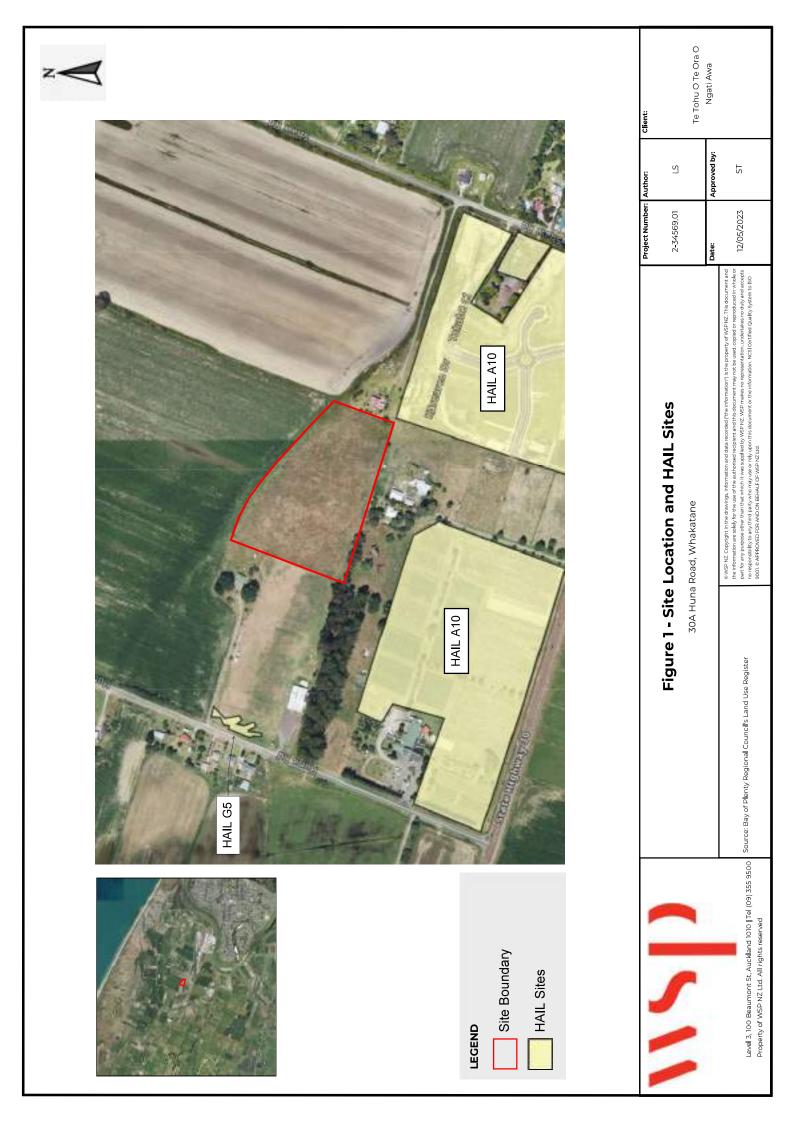
ARC. (2001, October). Background Concentrations of Inorganic Elements in Soils from the Auckland Region, Technical Publication No. 153, Auckland Regional Council.

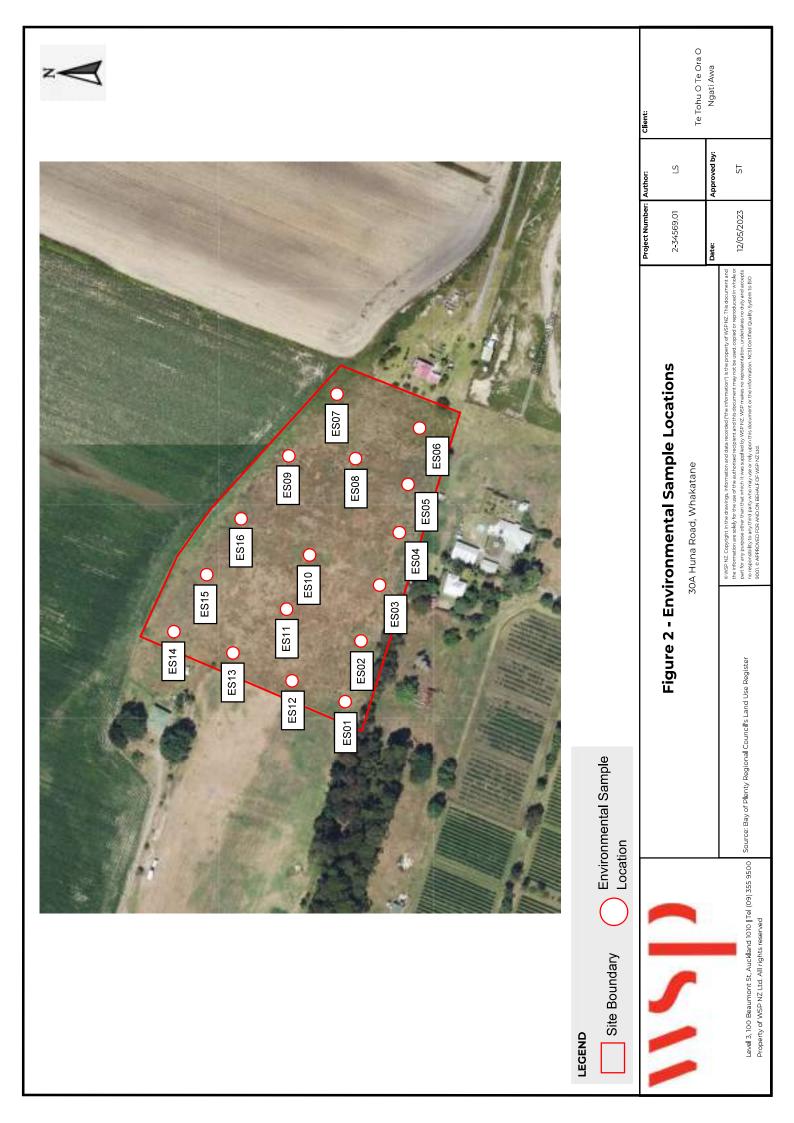
BOPRC. (2011). Trace Elements in Bay of Plenty Soils, BOPRC, Environmental Publication 2011/16.

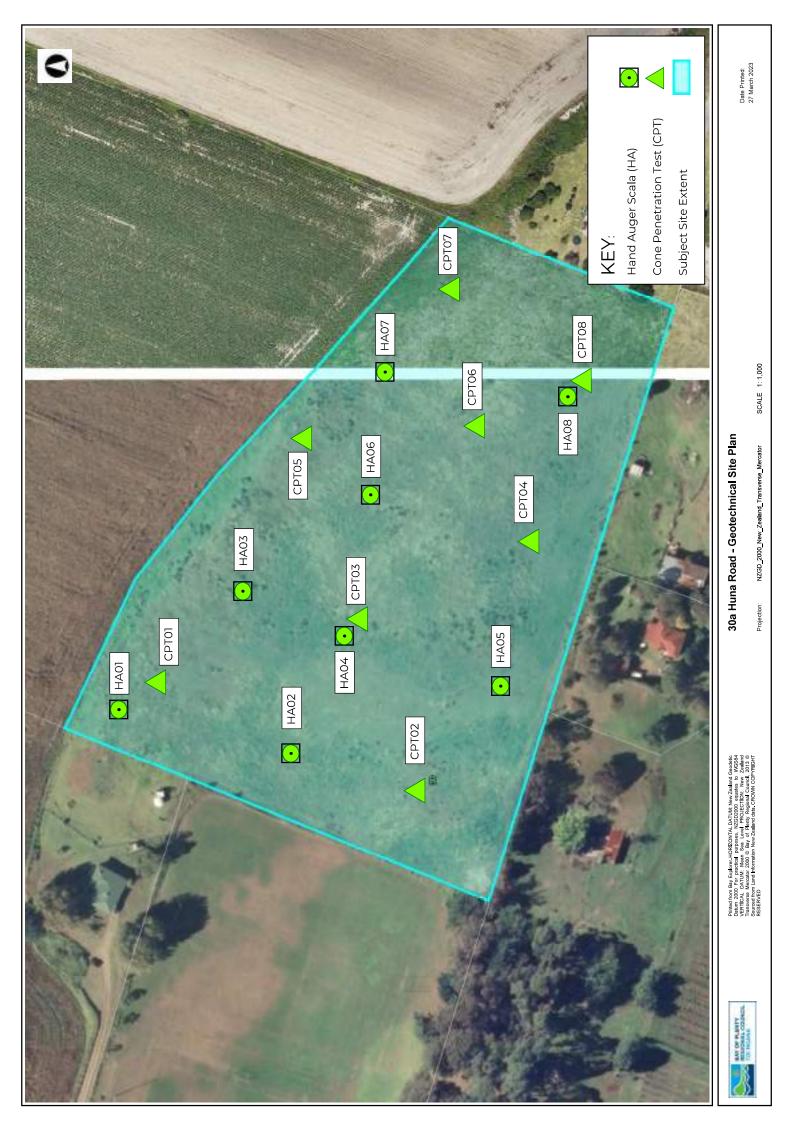
BOPRC. (2023a). Water Catchment - Surface Drainage Map. Retrieved from Bay of Plenty Regional Council:

https://maps.boprc.govt.nz/datasets/13fd78699cbf4e3a8e4f5db44fefba77_31/explore?location=-37.725348%2C176.166062%2C13.16

- BOPRC. (2023b). *Kopeopeo Canal Remediation Monitoring Phase*. Retrieved from Bay of Plenty Regional Council: https://www.boprc.govt.nz/our-projects/kopeopeo-canal-remediationmonitoring-phase
- BOPRC. (2023c). *HAIL Site Viewer Map*. Retrieved from Bay of Plenty Regional Council: https://gis.boprc.govt.nz/BayMaps/?appid=daa5de187d4f40cda63e5068605e5040

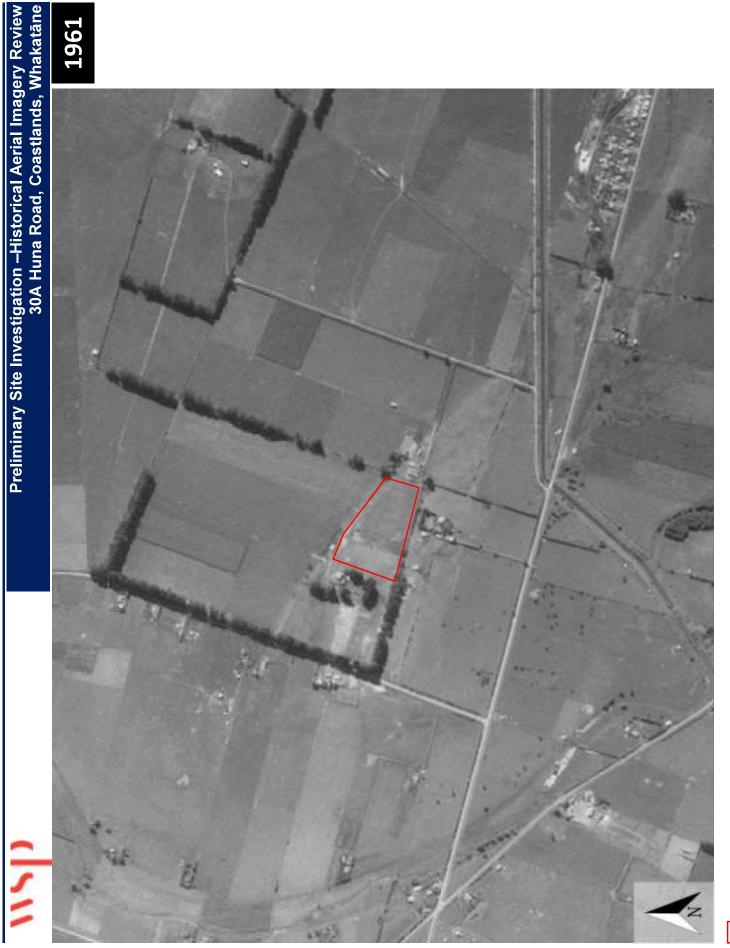

BOPRC. (2023d). *HAIL Request*. Retrieved from Bay of Plenty Regional Council: https://www.boprc.govt.nz/do-it-online/request-or-enquire/hail-request


- CCME. (2010). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health - Polycyclic Aromatic Hydrocarbons 2010. Canadian Council of Ministers of the Environment.
- GNS. (2023). New Zealand Geology Web Map 1:250,000 scale. Retrieved from GNS Science: https://data.gns.cri.nz/geology/
- Google. (2023). Google Earth Pro. Retrieved from https://earth.google.com/web
- LINZ . (2023). *Property and Owneship Boundaries* . Retrieved from Land Information New Zealand : https://data.linz.govt.nz/data/category/property-ownership-boundaries/
- MfE. (2011). Users' Guide National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health . Ministry for the Environment (2011).
- MfE. (2021a). Contaminated land management guidelines No. 1: Reporting on contaminated sites in New Zealand (Revised 2021). Retrieved from Ministry of Environment: https://environment.govt.nz/publications/contaminated-land-management-guidelines-no-1-reporting-on-contaminated-sites-in-new-zealand/
- MfE. (2021b). Contaminated Land Management Guideline No. 5: Site Investigation and Analysis of Soils. Wellington: Ministry for the Environment.
- MfE. (2022). *Hazardous Activities and Industries List*. Ministry of Environment. Retrieved from https://environment.govt.nz/publications/hazardous-activities-and-industries-list-hail/
- MfE. (2022). *Hazardous Actvities and Industries List*. Wellington: Ministry of Environment. Retrieved from https://environment.govt.nz/publications/hazardous-activities-andindustries-list-hail/
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999. Retrieved from National Environment Protection Council:
 - https://www.nepc.gov.au/nepms/assessment-site-contamination
- NES-CS. (2011). National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Wellington.
- Retrolens . (2023). *Retrolens Historical Image Resource*. Retrieved from Retrolens : https://retrolens.co.nz/
- WDC . (2017). Whakatane District Council Operative District Plan 2017. Retrieved from Whakatane District Council : https://www.whakatane.govt.nz/documents/council-plans/operativedistrict-plan-2017

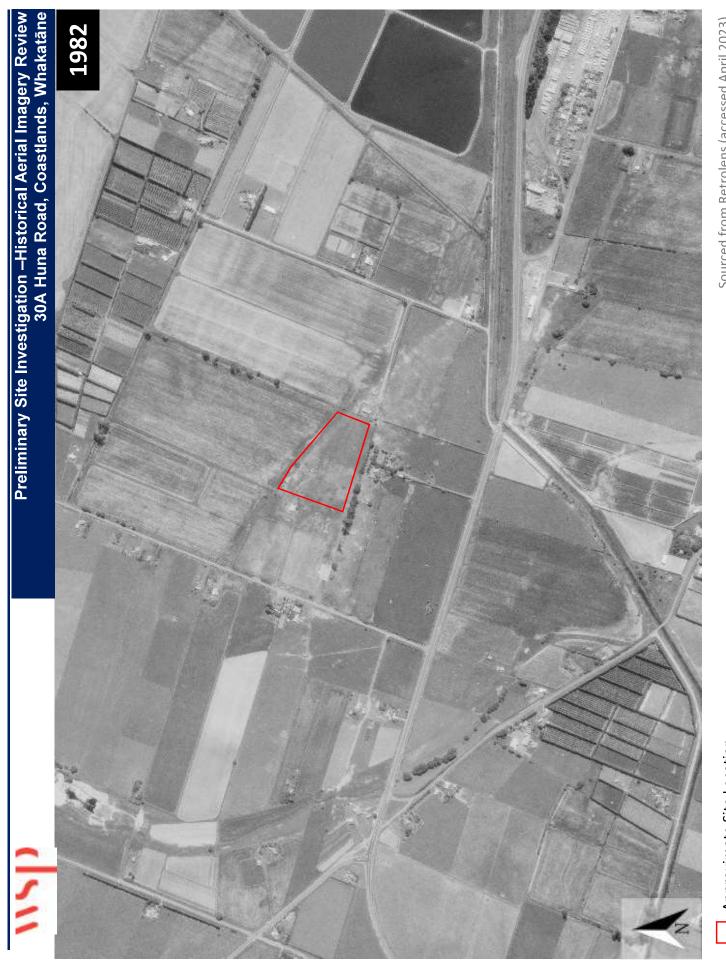

WDC . (2023). Whakatane District Council Online Map. Retrieved from Whakatane District Council

WSP Golder. (2020). *Remediating the Contaminated Kopeopeo Canal in New Zealand*. Retrieved from WSP Golder: https://www.golder.com/project/remediating-the-contaminatedkopeopeo-canal-in-new-zealand/

APPENDIX A – FIGURES



APPENDIX B – HISTORICAL AERIAL IMAGES



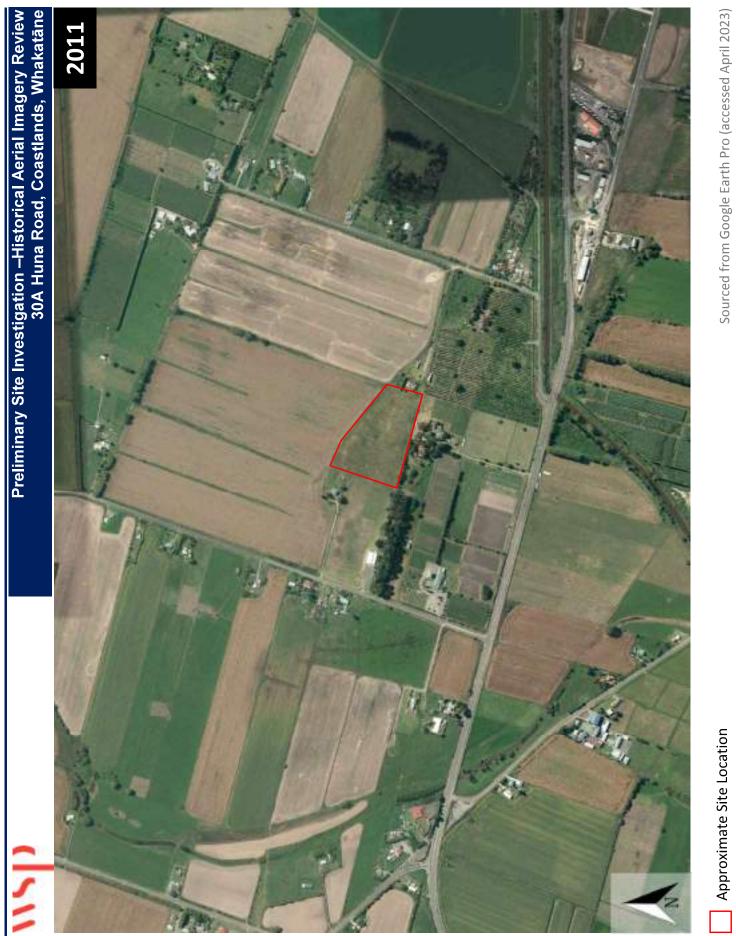
Sourced from Retrolens (accessed April 2023)

Approximate Site Location

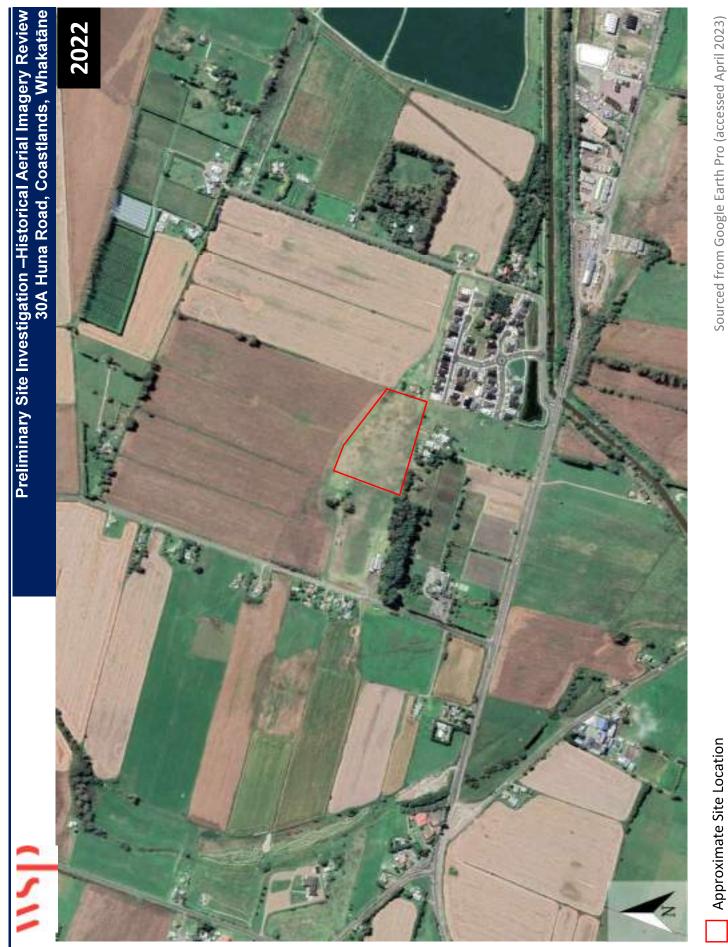
Sourced from Retrolens (accessed April 2023)

Sourced from Retrolens (accessed April 2023)

Approximate Site Location


Sourced from Retrolens (accessed April 2023)

Approximate Site Location



Sourced from Google Earth Pro (accessed April 2023)

Approximate Site Location

Sourced from Google Earth Pro (accessed April 2023)

APPENDIX C – REGULATORY ENQUIRY

Shotliff, Laurence

From:	Land Use Communication <landusecommunication@boprc.govt.nz></landusecommunication@boprc.govt.nz>
Sent:	Friday, 5 May 2023 11:07 am
То:	Cross, Jade
Subject:	RE: HAIL request
Attachments:	HAIL Request Map - 30A Huna Road, Paroa (Allot 28B6B2 Rangitaiki PSH, Allot 28B6B1B Rangitaiki PSH).pdf

Dear Jade,

RE: Site Contamination Enquiry for **30A Huna Road, Paroa (Allot 28B6B2 Rangitaiki PSH, Allot 28B6B1B Rangitaiki PSH)**

Thank you for your enquiry. We can confirm that the site is **NOT** currently registered on the Bay of Plenty Regional Council's Land Use Register.

To support the identification of land that may be contaminated, the Ministry for the Environment (MfE) has compiled a list of activities and industries that are considered likely to cause land contamination. This list is called the Hazardous Activities and Industries List (most commonly referred to as the HAIL) and is intended to identify most situations in New Zealand where hazardous substances could cause land contamination. For more information on the MfE HAIL please visit their website HERE.

The Bay of Plenty Regional Council's Land Use Register has been developed to try and identify where many of the activities and industries listed on the MfE HAIL have taken place or are taking place within the Region. However, the information we hold may not exhaustive and we have not been able to assess every site in the Region therefore it is possible that an activity or industry from the MfE HAIL has previously taken place or is currently taking place at the site in question.

We recommend you also contact **Whakatāne District Council**, which may hold additional information about this site that we are not aware of yet, and if you are concerned that an activity or industry from the MfE HAIL may have taken place at the site, the cautious way to proceed would be to undertake an independent audit of the site.

If you wish to discuss the matter further, please email LandUseCommunication@boprc.govt.nz.

Yours faithfully

The Land Use Register Team Bay of Plenty Regional Council Toi Moana

From: noreply@boprc.govt.nz <noreply@boprc.govt.nz> Sent: Friday, 5 May 2023 10:44 am To: Web Info Requests <WebInfo.Requests@boprc.govt.nz>; Zendesk Contact Centre <support@boprc.zendesk.com> Subject: HAIL request

Online submission

The form Hail/Property request form was submitted, this is the list of values it contained.

The following details were submitted:

Contact name	Jade Cross
Company name (if applicable)	WSP NZ Ltd
Postal address	100 Beaumont Street, Auckland CBD, Auckland, New Zealand, 1010
Phone	0273297437
Email address	jade.cross@wsp.com
Address of property of interest	30A Huna Road, Coastlands, Whakatāne, New Zealand, 3191

Disclaimer: This message and accompanying data may contain information that is confidential or subject to legal privilege. If you are not the intended recipient you are notified that any use, dissemination, distribution or copying of this message or data is prohibited. If you received this email in error, please notify us immediately and erase all copies of the message and attachments. We apologise for the inconvenience. Thank you.

APPENDIX D – HAND AUGER LOGS

Client: WSP Date: 6/04/2023 Address: 30A Huna Road, Coastlands, Whakatane Logged By: SDR geoverse nz Job No.: 23-2-34569.01 Checked By: HPS HAND AUGERED BOREHOLE Coordinates: NZTM: E1946908, N5792778 Borehole No.: HA01 SP01 Scala Penetrometer No.: Reduced Level: Soil Strengths Soil Classification (USCS) Ē Scala Penetrometer
 Shear Vane - Remoulded Shear Vane - Peak Log Depth (m) Strength / Density Groundwater Graphic **DESCRIPTIONS** SCALA PENETROMETER RESULTS Blows per 100mm 10 15 2 Organic silty SAND; dark brownish black. VL SM Very loose, moist to wet, poorly graded; sand, fine to medium; (TOPSOIL). SAND, with trace silt and gravel; light yellowish brown to light brown. 2 Loose to dense, moist, well graded; sand, fine to coarse, quartz; gravel, fine, rock fragments. 4 0.5 4 2 1.0 >1.1m: Becomes light brownish grey to light grey. 1.5 6 6 9 9 9 SW L-D 2.0 8 6 6 2.5 ▲ GW = 3.15m (06-Apr-23) F 4 3.0 3.1m: Becomes wet to saturated. 2 2 2 2 3.5 6 Borehole was terminated at 3.7m bgl. 8 Borehole collapsed at 3.3m bgl. 11 Standing groundwater was encountered at 3.15m bgl. 13 4.0 13 13 12 4.5 13 . 11 14 14 50. Notes: Client Project ID: 2-34569.01 100 150 200 25 50 SHEAR VANE RESULTS In Situ Strength (kPa) Calibration Factor Shear Vane No.: Cohesive Material **Description and Testing Notes** Non-Cohesive Material Material Descriptions: Soil description in accordance with Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes, NZ Geolechinel Society Inc, 2002 Scala Penetrometer Testing: NZS 4402:1988, Test 6.5.2, Dynamic Cone Penetrometer Testing: Guideline for Hand Held Shear Vana Test, NZSS, August 2001 Very Soft Soft Firm Very Loose Loose Medium Dense vs н Hard ٧L L MD D VD

Dense Very Dense

Page: 1 of 1

Generated with CORE-GS by Geroc - Geoverse - Hand Auger - 18/04/2023 10:25:18 am

Project:

Geotechnical Investigation

St Vst Stiff Very Stiff

		Ohauiti					Page 1 of 1
G	IV	Tauranga 311	2				Date
-		m. 027201402	29				Thursday, 6 April 2023
		NZS	5 4402: 1998 T	est 6.5.2 Dyna	amic Cone Pen	etrometer - Sc	cala
Project Name		TGA W	SP 30A Huna	Road SI	Project ID		23-2-34569.01
Client Project	ID		2-34569.01		Equipment ID		TGA 001
Site Location		30A Hu	ina Road, Wha	akatane	Test Number		SP01
Depth from	gound level to	start of penet	ration (mm)	0	Tested by		SDR
Depth (mm)	Number of blows	Depth (mm)	Number of blows	Depth (mm)	Checked by Number of blows		HPS
0	-	1700	6	3400	2	200 400	
100	0.5	1800	9	3500	2	600	
200	0.5	1900	9	3600	3	800 1000	
300	1	2000	9	3700	6	1200	
400	2	2100	8	3800	8	1600	
500	4	2200	6	3900	11	1800	
600	4	2300	6	4000	13	2200	
700	4	2400	5	4100	13	(mm) 2400 2600 Debth (mm)	
800	2	2500	7	4200	15	2800	
900	2	2600	7	4300	16	3000 3200	
1000	1	2700	6	4400	13	3400	
1100	2	2800	7	4500	12	3600 3800	
1200	4	2900	4	4600	15	4000	
1300	3	3000	3	4700	13	4200 4400	
1400	3	3100	3	4800	11	4600	
1500	4	3200	2	4900	14	4800 5000	
1600	6	3300	2	5000	14		0 2 4 6 8 10 Number of blows
				Test	Notes		

 Project:
 Geotechnical Investigation

 Client:
 WSP

30A Huna Road, Coastlands, Whakatane

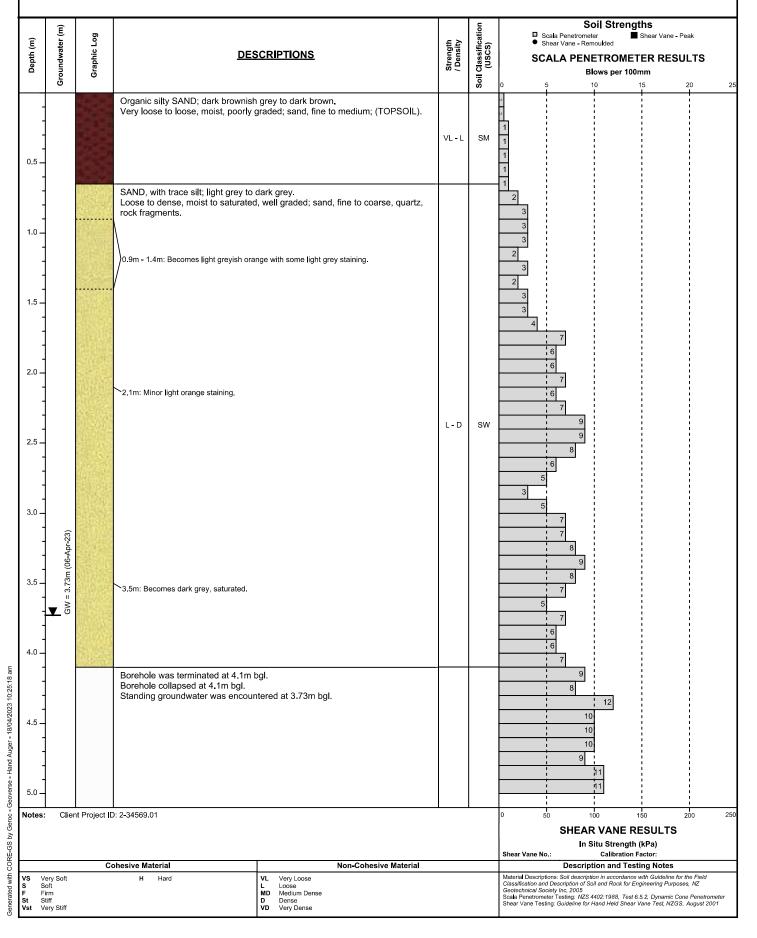
Page: 1 of 1

Date: 6/04/2023 Logged By: HPS Checked By: SDR

Job No.: 23-2-34569.01

Address:

HAND AUGERED BOREHOLE


Coordinates: NZTM: E1946900, N5792700

Borehole No.: Scala Penetrometer No.:

SP02

HA02

Reduced Level:

		Ohauiti					Page 1 of 1
G	IV	Tauranga 311	2				Date
5		m. 027201402	29				Thursday, 6 April 2023
		NZS	5 4402: 1998 1	est 6.5.2 Dyna		etrometer - Sc	cala
Project Name		TGA W	SP 30A Huna	Road SI	Project ID		23-2-34569.01
lient Project	ID		2-34569.01		Equipment ID		TGA 001
Site Location		30A Hı	ina Road, Wha	akatane I	Test Number		SP02
Depth from	gound level to	start of penet	ration (mm)	0	Tested by		SDR
Depth (mm)	Number of blows	Depth (mm)	Number of blows	Depth (mm)	Checked by Number of blows	0	
0	-	1700	4	3400	9	200 400	
100	0.5	1800	7	3500	8	600 800	
200	0.5	1900	6	3600	7	1000	
300	1	2000	6	3700	5	1200 1400	
400	1	2100	7	3800	7	1600	
500	1	2200	6	3900	6	1800 2000	
600	1	2300	7	4000	6	2200	
700	1	2400	9	4100	7	(mm) 2400 2600 Debth (mm)	
800	2	2500	9	4200	9	2800	
900	3	2600	8	4300	8	3000 3200	
1000	3	2700	6	4400	12	3400	
1100	3	2800	5	4500	10	3600 3800	
1200	2	2900	3	4600	10	4000	
1300	3	3000	5	4700	10	4200 4400	
1400	2	3100	7	4800	9	4600	
1500	3	3200	7	4900	11	4800 5000	
1600	3	3300	8	5000	11		0 2 4 6 8 Number of blows
				Test	Notes		

Client: Date: 6/04/2023 Address: 30A Huna Road, Coastlands, Whakatane Logged By: SDR geoverse nz 23-2-34569.01 Checked By: HPS Job No.: HAND AUGERED BOREHOLE Coordinates: NZTM: E1946964, N5792723 HA03 Borehole No .: Scala Penetrometer No.: SP03 Reduced Level: Soil Strengths Soil Classification (USCS) Ē Scala Penetrometer
 Shear Vane - Remoulded Shear Vane - Peak Log Strength / Density Depth (m) Groundwater Graphic **DESCRIPTIONS** SCALA PENETROMETER RESULTS Blows per 100mm 10 15 2 SAND, with some organic silt, with trace gravel; dark brown with some brownish grey to light yellowish brown mottling. Very loose to loose, dry to moist, poorly graded; sand, fine to medium; gravel, VL - L SP fine, rock fragments; (FILL). SAND, with trace silt and gravel; light yellowish brown to light brown. Loose to medium dense, moist, well graded; sand, fine to coarse, quartz; 2 0.5 2 gravel, fine, rock fragments. 2 2 L - MD 2 2 1.0 3 3 SAND, with trace silt and gravel; light brownish grey to light grey. Medium dense to very dense, moist to wet, well graded; sand, fine to coarse, 4 1.5 3 quartz; gravel, fine, rock fragments. 6 2.0 8 8 10 2.5 14 sw 12 8 • 6 6 3.0 10 9 MD -VD 8 6 6 3.5 8 7 9 12 4.0 17 ▲ GW = 4.7m (06-Apr-23) 13 8 9 6 4.5 4.5m: Becomes wet to saturated. 8 6 8 5.0 End of borehole at 5.0m bgl. Standing groundwater was encountered at 4.7m bgl. Client Project ID: 2-34569.01 100 150 200 25 Notes: 50 SHEAR VANE RESULTS In Situ Strength (kPa) Calibration Factor Shear Vane No.: **Cohesive Material** Non-Cohesive Material **Description and Testing Notes** Material Descriptions: Soil description in accordance with Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes, NZ Geolechinel Society Inc, 2002 Scala Penetrometer Testing: NZS 4402:1988, Test 6.5.2, Dynamic Cone Penetrometer Testing: Guideline for Hand Held Shear Vana Test, NZSS, August 2001 Very Soft Soft Firm Very Loose Loose Medium Dense vs н Hard ٧L L MD D VD

Dense Very Dense

Page: 1 of 1

St Vst Stiff Very Stiff

Project:

Geotechnical Investigation

WSP

-		Ohauiti					Page 1 of 1
G	IV	Tauranga 311	2				Date
5		m. 027201402	29				Thursday, 6 April 2023
		NZS	6 4402: 1998 1	est 6.5.2 Dyna		etrometer - So	ala
Project Name		TGA W	SP 30A Huna	Road SI	Project ID		23-2-34569.01
Client Project	ID		2-34569.01		Equipment ID		TGA 001
Site Location		30A Hı	ina Road, Wha	akatane I	Test Number		SP03
Depth from	gound level to	start of penet	ration (mm)	0	Tested by		SDR
Depth (mm)	Number of blows	Depth (mm)	Number of blows	Depth (mm)	Checked by Number of blows	C	
0	-	1700	4	3400	6	200 400	
100	0.5	1800	5	3500	6	600 800	
200	0.5	1900	7	3600	5	1000	
300	2	2000	6	3700	8	1200	
400	2	2100	5	3800	7	1600	
500	2	2200	8	3900	9	1800	
600	2	2300	8	4000	12	2200	
700	2	2400	8	4100	17	(mm 2400 2600 Debth (mm	
800	2	2500	10	4200	13	2800	
900	2	2600	14	4300	8	3000 3200	
1000	2	2700	12	4400	9	3400	
1100	3	2800	8	4500	6	3600 3800	
1200	4	2900	6	4600	8	4000	
1300	5	3000	6	4700	6	4200 4400	
1400	3	3100	10	4800	5	4600	
1500	4	3200	9	4900	5	4800 5000	
1600	3	3300	8	5000	8		0 2 4 6 8 10 Number of blows
				Test	Notes		

Client: WSP Date: 6/04/2023 Address: 30A Huna Road, Coastlands, Whakatane Logged By: HPS geoverse nz Job No.: 23-2-34569.01 Checked By: SDR HAND AUGERED BOREHOLE Coordinates: NZTM: E1946950, N5792686 Borehole No.: HA04 Scala Penetrometer No.: SP04 Reduced Level: Soil Strengths Soil Classification (USCS) Ē Scala Penetrometer
 Shear Vane - Remoulded Shear Vane - Peak Log Depth (m) Strength / Density Groundwater Graphic **DESCRIPTIONS** SCALA PENETROMETER RESULTS Blows per 100mm 10 15 2 Organic silty SAND; dark brownish black to dark brown. Loose, moist, poorly graded; sand, fine to medium; (TOPSOIL). 1 L SM 0.3m - 0.4m: Becomes loose. 2 0.5 3 SAND, with trace silt; light orange grey with some light brownish orange staining. 4 Medium dense to dense, moist to saturated, well graded; sand, fine to coarse, 8 quartz, rock fragments. 9 1.0 1.2m: Becomes light grey with minor dark orange staining. 6 8 1.5 6 6 2.0 2.0m: Becomes light grey. 9 MD -SW 8 D 9 2.5 8 ▲ GW = 3.34m (06-Apr-23) 8 3.0 3.0m: Some light yellowish brown staining. 7 ' 6 3.2m: Becomes dark grey, saturated. 6 3.5 8 F 8 Borehole was terminated at 3.9m bgl. 4.0 Borehole collapsed at 3.9m bgl. Standing groundwater was encountered at 3.34m bgl. 8 9 8 8 4.5 10 12 η. 11 11 50. Notes: Client Project ID: 2-34569.01 100 150 200 25 50 SHEAR VANE RESULTS In Situ Strength (kPa) Calibration Factor Shear Vane No.: **Cohesive Material** Non-Cohesive Material **Description and Testing Notes** Material Descriptions: Soil description in accordance with Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes, NZ Geolechinel Society Inc, 2002 Scala Penetrometer Testing: NZS 4402:1988, Test 6.5.2, Dynamic Cone Penetrometer Testing: Guideline for Hand Held Shear Vana Test, NZSS, August 2001 Very Soft Soft Firm Very Loose Loose Medium Dense vs н Hard ٧L L MD D VD St Vst Stiff Very Stiff Dense Very Dense

Page: 1 of 1

Generated with CORE-GS by Geroc - Geoverse - Hand Auger - 18/04/2023 10:25:18 am

Project:

Geotechnical Investigation

C	• /	82 Adler Drive Ohauiti	-					Pa	ge 1 of 1	
	IV	Tauranga 311	2						Date	
		m. 027201402	29					Thursday	/, 6 April 2	2023
		NZS	5 4402: 1998 T	est 6.5.2 Dyna		etrometer - Sc	ala			
Project Name		TGA W	SP 30A Huna	Road SI	Project ID			23-2	-34569.01	
Client Project	ID		2-34569.01		Equipment ID			Т	GA 001	
Site Location		30A Hι	ina Road, Wha	akatane	Test Number				SP04	
Depth from	gound level to	start of penet	ration (mm)	0	Tested by				SDR	
Depth (mm)	Number of blows	Depth (mm)	Number of blows	Depth (mm)	Checked by Number of blows	0			HPS	
0	-	1700	6	3400	7	200 400	—	-		
100	1	1800	6	3500	6	600 800				
200	1	1900	7	3600	5	1000				
300	1	2000	7	3700	8	1200 1400			-	
400	2	2100	9	3800	6	1600			-	
500	1	2200	8	3900	8	1800 2000				
600	1	2300	8	4000	7	2200				
700	3	2400	9	4100	8	(u 2400 2600 Debth				
800	4	2500	9	4200	8	ق 2800				
900	8	2600	9	4300	9	3000 3200				
1000	9	2700	8	4400	8	3400				
1100	5	2800	7	4500	8	3600 3800			-	
1200	5	2900	8	4600	10	4000				
1300	6	3000	8	4700	12	4200 4400				
1400	8	3100	7	4800	11	4600				
1500	7	3200	6	4900	11	4800 5000				
1600	5	3300	7	5000	11		0	2 4 Number	6 of blow	8 10 s
				Test	Notes					

 Project:
 Geotechnical Investigation

 Client:
 WSP

 Address:
 30A Huna Road, Coastlands, Whakatane

HA05

SP05

Page: 1 of 1

Date: 6/04/2023 Logged By: HPS Checked By: SDR

Job No.: 23-2-34569.01

HAND AUGERED BOREHOLE

Coordinates: NZTM: E1946914, N5792628

Borehole No.: Scala Penetrometer No.:

Reduced Level:

Depth (m)	Groundwater (m)	Graphic Log	DEs	SCRIPTIONS	Strength / Density	Soil Classification (USCS)	• :	Scala Penetrome Shear Vane - Rer	noulded ETROM	Shear Vane		
ŏ	Groui	Gra			\		0		lows per 1 10	100mm 15	20	25
-			Organic silty SAND; dark brownist Loose, moist, poorly graded; sand	n grey to dark brownish black. , fine to medium; (TOPSOIL).	L	SM	1 1 1 2 2					
0.5			Organic SAND, with some silt; bro Very loose, moist, poorly graded;		VL	SP	1					
1			Organic sandy SILT; dark brownis		St	MS	1	1 1 1	-			
1.0 _		0 0 0 1 0 1	brown mottling.	ith some dark brownish black to orange		SP	1					
- - 1.5 _ -			pumiceous; (FILL). SAND, with trace silt; light orange	or silt; brown. e to coarse, pumiceous; gravel, fine,]		2 1 2 3 3 3 3 3					
- - 2.0			1.8m: Becomes light grey with some light 1.8m	ht orange brown to dark brown staining.			3 4 5					
	GW = 3.02m (06-Apr-23)		2.8m: Becomes dark grey, saturated.		L-D	sw		6 6 6				
-			Borehole was terminated at 3.5m Borehole collapsed at 3.5m bgl. Standing groundwater was encour	-				6 9 8 10				
4.0 _			4.0m: Becomes very dense.						13	16	20 20	
4.5 _												
5.0 _												
Notes:			eter testing was terminated at 4.3m bgl. F : 2-34569.01	tefusal at 4.3m bgl.	-			SHEAF In S	Situ Streng		200	250
		Co	hesive Material	Non-Cohesive Material			Shear Vane N			on Factor: esting Notes		
S So F Fir St St	m		H Hard	VL Very Loose L Loose MD Medium Dense D Dense VD Very Dense			Classification and Geotechnical So Scala Penetrom	d Description of So ociety Inc, 2005 eter Testing: NZS	oil and Rock fo 4402:1988, Te	nce with Guideline or Engineering Pur est 6.5.2, Dynamic tear Vane Test, NZ	ooses, NZ Cone Penetrom	eter 11

0		82 Adler Drive Ohauiti	2				Page 1 of 1
G	IV	Tauranga 311	2				Date
		m. 027201402	29				Thursday, 6 April 2023
		NZS	5 4402: 1998 1	est 6.5.2 Dyna	amic Cone Pen	etrometer - So	cala
Project Name		TGA W	/SP 30A Huna	Road SI	Project ID		23-2-34569.01
Client Project	ID		2-34569.01		Equipment ID		TGA 001
Site Location		30A Hι	ina Road, Wha	akatane	Test Number		SP05
Depth from	gound level to	start of penet	ration (mm)	0	Tested by		SDR
Depth (mm)	Number of blows	Depth (mm)	Number of blows	Depth (mm)	Checked by Number of blows	C	HPS
0	-	1700	3	3400	9	200 400	_
100	1	1800	3	3500	6	600	
200	1	1900	3	3600	6	800	_
300	1	2000	4	3700	9	1000	
400	2	2100	5	3800	8	1400	_
500	2	2200	4	3900	10	1600	
600	1	2300	4	4000	13	1800 <u>E</u> 2000	
700	0.5	2400	4	4100	16	2000 2200 Debth Debth	
800	0.5	2500	5	4200	20	۵ 2400	
900	1	2600	8	4300	20	2600	
1000	1	2700	7	4400	Bouncing	3000	
1100	1	2800	5	4500	-	3200	
1200	2	2900	5	4600	-	3400	
1300	1	3000	5	4700	-	3800	
1400	2	3100	6	4800	-	4000	
1500	3	3200	6	4900	-	4200	
1600	3	3300	6	5000	-		0 2 4 6 8 10 Number of blows
				Test	Notes		
		Scala pene	trometer h	ammer start	ed bouncin	g. Refusal at	t 4.3m bgl.

Projec			ical Investigation			P	age: 1 of 1			
Client		WSP				г	Date: 6/04/2023		2	
Addre	SS:	30A Huna	Road, Coastlands, Whakatane				By: SDR	deo	verse	nz
Job N	o.:	23-2-3456	9.01				I By: HPS	900	Gedenheim	d bulley
				HAND AUGERED BORE	HOLE					
		_	Borehole No.: HA			FM: E19	46988, N5792671			
		Sc	ala Penetrometer No.: SP(06 Reduced Lo	evel:					
	Ê					ы		Soil Strengt		
(m)	Groundwater (m)	Graphic Log			igth sity	Classification (USCS)	 Scala Penetro Shear Vane - 	Remoulded	Shear Vane - Peak	
Depth (m)	wpun	raphi	DES	<u>CRIPTIONS</u>	Strength / Density	Class (US(SCALA PE	NETROMET Blows per 100m	ER RESULTS	
	Gro	9				Soil	0 5		5 20	25
-		li O U	Organic silty SAND; dark brownish	black. poorly graded; sand, fine to medium;			1,6			
-			(TOPSOIL).	bony gradea, sana, mie to medium,			1			
							2			
0.5 —		586			VL - L	SM	1.5			
-							15			
							12 I			
-					L		1			
1.0 —				gnt brown. to coarse, quartz, rock fragments; gravel,		+	1			
			fine, rock fragments. SAND, with trace silt; light yellowis	h brown to light brown			1			
-			Loose to dense, moist, well graded	; sand, fine to coarse, quartz.			2			
- 1.5 _							1			
							3			
-							3			
							7			
2.0 -			2.0m: Becomes light yellowish grey to lig	abt grey			8			
-			2.011. Decomes light yellowish grey to lig	girt grey.			6			
					L-D	sw	4			
-							7			
2.5 _							5			
							3			
-	ŝ						4			
3.0	3.4m (06-Apr-23)						4			
0.0	-90) r						5			
-	= 3.4n		3.2m: Becomes wet to saturated.				4			
	▼ ⁸ 0						7			
3.5 _							6			
		W PALLE	Borehole was terminated at 3.6m b	ogl.	-		¦ 7	1		
]			Borehole collapsed at 3.5m bgl. Standing groundwater was encoun	tered at 3.4m bgl.			8			
							8			
4.0 -							7			
								12		
								12		
4.5								12		
-								13		
1								15		
]								15		
5.0 _								15		
Notes:	Clie	ent Project ID	I D: 2-34569.01				0 50	100 1	50 200	250
							Shear Vane No.:	n Situ Strength (Calibration Fa	ictor:	
VS Ve	ery Soft	Co	bhesive Material H Hard	Non-Cohesive Material VL Very Loose			Material Descriptions: Soil des	ription and Testi	ith Guideline for the Field	d
S So F Fir	oft rm			L Loose MD Medium Dense			Classification and Description Geotechnical Society Inc, 2003 Scala Penetrometer Testing: N	of Soil and Rock for Eng 5 IZS 4402:1988, Test 6.5	ineering Purposes, NZ 5.2, Dynamic Cone Penet	trometer
St Sti Vst Ve	iff ery Stiff			D Dense VD Very Dense			Shear Vane Testing: Guideline	for Hand Held Shear V	ane Test, NZGS, August	2001

Generated with CORE-GS by Geroc - Geoverse - Hand Auger - 18/04/2023 10:25:18 am

-		Ohauiti					Page 1 of 1
G	IV	Tauranga 311	2				Date
-		m. 027201402	29				Thursday, 6 April 2023
		NZS	5 4402: 1998 T	est 6.5.2 Dyna	mic Cone Pen	etrometer - So	cala
Project Name		TGA W	SP 30A Huna	Road SI	Project ID		23-2-34569.01
Client Project	ID		2-34569.01		Equipment ID		TGA 001
Site Location		30A Hu	ina Road, Wha	akatane	Test Number		SP06
Depth from	gound level to	start of penet	ration (mm)	0	Tested by		SDR
Depth (mm)	Number of blows	Depth (mm)	Number of blows	Depth (mm)	Checked by Number of blows	C	HPS
0	-	1700	3	3400	7	200 400	_
100	0.5	1800	3	3500	6	600 800	-
200	0.5	1900	7	3600	6	1000	_
300	1	2000	8	3700	7	1200 1400	
400	2	2100	8	3800	8	1600	_
500	0.5	2200	6	3900	7	1800	
600	0.5	2300	4	4000	8	2200	
700	0.5	2400	7	4100	7	(mm 2400 2600 Debth	
800	0.5	2500	7	4200	9	2800	
900	1	2600	5	4300	12	3000 3200	
1000	1	2700	3	4400	12	3400	
1100	1	2800	4	4500	12	3600	
1200	1	2900	4	4600	13	4000	
1300	2	3000	4	4700	11	4200 4400	
1400	1	3100	5	4800	15	4600	
1500	1	3200	4	4900	15	4800 5000	
1600	3	3300	5	5000	15		0 2 4 6 8 1 Number of blows
				Test l	Notes		

Project: Geotechnical Investigation Page: 1 of 1 Client: WSP Date: 6/04/2023 Address: 30A Huna Road, Coastlands, Whakatane Logged By: SDR geoverse nz Job No.: 23-2-34569.01 Checked By: HPS HAND AUGERED BOREHOLE Coordinates: NZTM: E1947045, N5792670 Borehole No.: HA07 SP07 Scala Penetrometer No.: Reduced Level: Soil Strengths Soil Classification (USCS) Ē Scala Penetrometer
 Shear Vane - Remoulded Shear Vane - Peak Log Depth (m) Strength / Density Groundwater Graphic **DESCRIPTIONS** SCALA PENETROMETER RESULTS Blows per 100mm 10 15 20 2 Organic silty SAND; dark brownish black. Loose, moist to wet, poorly graded; sand, fine to medium; (TOPSOIL). L SM SAND, with trace silt; light yellowish brown to light brown. 2 0.5 Loose to dense, dry to moist, well graded; sand, fine to coarse, quartz. 1.0 1.2m: Becomes light yellowish grey to light brownish grey with some light grey staining. 1.5 2 3 sw L - D 4 2 2.0 7 ▲ GW = 2.95m (06-Apr-23) 2.5 4 2.7m: Becomes wet to saturated. 3.0 Borehole was terminated at 3.1m bgl. ' 6 Borehole collapsed at 3.1m bgl. 6 Standing groundwater was encountered at 2.95m bgl. 6 4 3.5 3 6 6 4.0 7 8 12 **¦**1 12 4.5 18 11 **1**1 10 11 50. Notes: Client Project ID: 2-34569.01 100 150 200 25 50 SHEAR VANE RESULTS In Situ Strength (kPa) Calibration Factor Shear Vane No.: Cohesive Material **Description and Testing Notes** Non-Cohesive Material Material Descriptions: Soil description in accordance with Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes, NZ Geolechnical Society (nr. 2002; 1988; Test 6.5.2, Dynamic Cone Penetrometer Steal Penetrometer Testing: NZS 4402: 1988; Test 6.5.2, Dynamic Cone Penetrometer Shear Vane Testing: Guideline for Hand Held Shear Vane Test, NZSS, August 2001 Very Soft Soft Firm Very Loose Loose Medium Dense vs н Hard ٧L L MD D VD St Vst Stiff Very Stiff Dense Very Dense

Generated with CORE-GS by Geroc - Geoverse - Hand Auger - 18/04/2023 10:25:18 am

-		Ohauiti					Page 1 of 1
	IV	Tauranga 311	2				Date
		m. 027201402	29				Thursday, 6 April 2023
		NZ	5 4402: 1998 1	est 6.5.2 Dyna		etrometer - So	ala
Project Name		TGA W	SP 30A Huna	Road SI	Project ID		23-2-34569.01
Client Project	ID		2-34569.01		Equipment ID		TGA 001
Site Location		30A Hu	ina Road, Wha	akatane	Test Number		SP07
Depth from	gound level to	start of penet	ration (mm)	0	Tested by Checked by		SDR HPS
Depth (mm)	Number of blows	Depth (mm)	Number of blows	Depth (mm)	Number of blows	C	
0	-	1700	3	3400	6	200 400	
100	1	1800	4	3500	4	600 800	
200	1	1900	4	3600	3	1000	
300	1	2000	2	3700	5	1200	
400	2	2100	7	3800	6	1600	
500	2	2200	6	3900	6	1800	
600	3	2300	5	4000	6	2200	
700	4	2400	5	4100	7	2400 2600 2600	
800	3	2500	7	4200	8	2800	
900	3	2600	6	4300	12	3000 3200	
1000	3	2700	4	4400	11	3400	
1100	2	2800	7	4500	12	3600 3800	
1200	3	2900	5	4600	18	4000	
1300	3	3000	5	4700	11	4200 4400	
1400	3	3100	5	4800	11	4600	
1500	3	3200	6	4900	10	4800 5000	
1600	2	3300	6	5000	11		0 2 4 6 8 10 Number of blows
				Test	Notes		

Client: WSP Date: 6/04/2023 Address: 30A Huna Road, Coastlands, Whakatane Logged By: HPS geoverse nz 23-2-34569.01 Checked By: SDR Job No.: HAND AUGERED BOREHOLE Coordinates: NZTM: E1947033, N5792592 HA08 Borehole No .: Scala Penetrometer No.: SP08 Reduced Level: Soil Strengths Soil Classification (USCS) Ē Scala Penetrometer
 Shear Vane - Remoulded Shear Vane - Peak Log Strength / Density Depth (m) Groundwater Graphic **DESCRIPTIONS** SCALA PENETROMETER RESULTS Blows per 100mm 10 15 2 Organic silty SAND; dark brownish grey to dark brown. Very loose to loose, moist, poorly graded; sand, fine to medium; (TOPSOIL). VL - L SM 2 0.5 Organic silty SAND, with some gravel; dark brownish grey with some dark brown to dark brownish black mottling. VI Very loose, moist, well graded; sand, fine to coarse, pumiceous; gravel, fine, pumiceous; (FILL). SAND, with trace silt; light grey to dark grey. 1.0 Loose to medium dense, moist to saturated, well graded; sand, fine to coarse, quartz, rock fragments. 2 2 2 1.5 1.6m: Becomes light grey. 4 2.0 L-MD SW 2.5 2.5m - 2.6m: Becomes dense. = 3.33m (06-Apr-23) 3.0 3.1m: Some grevish brown staining. 4 3.2m: Becomes dark grey, saturated. **▼** § 3.5 Borehole was terminated at 3.7m bgl. Borehole collapsed at 3.7m bgl. 4 Standing groundwater was encountered at 3.33m bgl. 4 4.0 4 4 4.5 6 50. Client Project ID: 2-34569.01 100 150 200 25 Notes: 50 SHEAR VANE RESULTS In Situ Strength (kPa) Calibration Factor: Shear Vane No.: **Cohesive Material** Non-Cohesive Material **Description and Testing Notes** Material Descriptions: Soil description in accordance with Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes, NZ Geolechinel Society Inc, 2002 Scala Penetrometer Testing: NZS 4402:1988, Test 6.5.2, Dynamic Cone Penetrometer Testing: Guideline for Hand Held Shear Vana Test, NZSS, August 2001 Very Soft Soft Firm Very Loose Loose Medium Dense vs н Hard ٧L L MD D VD

Dense Very Dense

Page: 1 of 1

Generated with CORE-GS by Geroc - Geoverse - Hand Auger - 18/04/2023 10:25:18 am

Project:

Geotechnical Investigation

St Vst

Stiff Very Stiff

		Ohauiti					Page 1 of 1
	IV	Tauranga 311	2				Date
		m. 027201402	29				Thursday, 6 April 2023
		NZS	5 4402: 1998 T	est 6.5.2 Dyna		etrometer - Sc	ala
Project Name		TGA W	/SP 30A Huna	Road SI	Project ID		23-2-34569.01
lient Project	ID		2-34569.01		Equipment ID		TGA 001
ite Location		30A Hu	ina Road, Wha	akatane	Test Number		SP08
Depth from	gound level to	start of penet	ration (mm)	0	Tested by Checked by		SDR HPS
Depth (mm)	Number of blows	Depth (mm)	Number of blows	Depth (mm)	Number of blows	C	
0	-	1700	4	3400	3	200 400	
100	0.5	1800	5	3500	3	600	
200	0.5	1900	4	3600	3	800 1000	
300	2	2000	5	3700	3	1200 1400	
400	2	2100	6	3800	4	1600	
500	2	2200	6	3900	4	1800 2000	
600	1	2300	7	4000	4	2200	
700	1	2400	5	4100	5	(mm 2400 2600 Oebth	
800	0.5	2500	7	4200	4	2800	
900	0.5	2600	9	4300	4	3000 3200	
1000	2	2700	7	4400	5	3400	
1100	2	2800	7	4500	5	3600 3800	
1200	2	2900	8	4600	5	4000	
1300	2	3000	7	4700	6	4200 4400	
1400	4	3100	6	4800	7	4600	
1500	3	3200	4	4900	6	4800 5000	
1600	3	3300	3	5000	7		0 2 4 6 8 10 Number of blows
				Test	Notes		

APPENDIX E – LAB RESULTS

Table A1 30A Huna Road DS1 Analytical Soil Results - Heavy Metals

Location			ESOI	ES02	ES03	ES04	ES05	ES06	ES07	ES08
Sample Name		NESCS - Human	1_0.1	2_0.1	3_0.1	4_0.1	5_0.1	6_0.1	7_0.1	8 <u>0</u> 1
Laboratory Sample Number	Trace Elements in Bay	Health - Decidential	3252425.1	3252425.2	3252425.3	3252425.4	3252425.5	3252425.6	3252425.7	3252425.8
Sample Depth	of Plenty Soils, 2011 ³		0.1	L'O	l.0	0.1	D.D	0.1	L.O	0.1
Geological Unit		- %O	Silty clay							
Sampling Date			1/05/2023	1/05/2023	1/05/2023	1/05/2023	1/05/2023	1/05/2023	1/05/2023	1/05/2023
Heavy Metals (mg/kg)										
Arsenic	6.4	20	3	۲	2	5	4	4	2	4
Cadmium	0.29	м	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chromium (III+VI) ²	8.3	460	3	2	2	3	2	2	2	2
Copper	10.4	> 10,000	5	4	4	5	3	3	3	2
Lead	9.2	210	3.7	2.8	2.8	3	3.4	3.4	2.9	2.7
Nickel ⁵	6.2	400	<2	<2	<2	<2	<2	<2	<2	<2
Zinc ⁵	41.1	8,000	20	6[23	24	23	24	21	15
Location			ES09	ESIO	ES11	ES12	ESI3	ES14	ES15	ES16
WSP Sample Name		NESCS - Human	9_0.1	10_01	1.0_11	12_0.1	13_0.1	14_0.1	15_0.1	16_0.1
Laboratory Report Number	Trace Elements in Bay	Health - Decidential	3252425.9	3252425.10	3252425.11	3252425.12	3252425.13	3252425.14	3252425.15	3252425.16
Sample Depth	of Plenty Soils, 2011 ³	1001 4	0.1	l.O	0.1	0.1	0.1	0.1	L.O	0.1
Geological Unit		%O	Silty clay							
Sampling Date			1/05/2023	1/05/2023	1/05/2023	1/05/2023	1/05/2023	1/05/2023	1/05/2023	1/05/2023
Heavy Metals (mg/kg)										
Arsenic	4.9	20	3	5	4	4	4	2	2	3
Cadmium ¹	0.29	З	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chromium (III+VI) ²	8.3	460	3	2	2	2	2	3	3	3
Copper	10.4	> 10,000	2	3	6	5	5	3	<2	<2
Lead	9.2	210	2.6	3.2	2.8	2.7	3.2	4.1	3.2	2.6
Nickel 5	6.2	400	<2	<2	<2	<2	<2	<2	<2	<2
Zinc ⁵	41.1	8,000	16	17	18	19	21	27	23	17

Key:

Exceeds human health criteria Exceeds background criteria

Notes:

1. Cadmium - SCS based on pH 5. Cadmium absorption (i.e. plant uptake of cadmium) increases with decreasing pH (see MfE methodology document).

2. Chromium - SCS tabulated is for chromium VI. This is conservative as samples have been analysed for total chromium (i.e. III and VI).

3. Trace Elements in Bay of Plenty Soils, BOPRC, Environmental Publication 2011/16 - Table 2a: Mean topsoil (0-10 cm) trace element concentrations of maize cropping sites in 2009

4. Users Guide National Environmental Standard (NES) For Assessing and Managing Contaminants in Soil to Protect Human Health. New Zealand. 2011. Commercial / industrial outdoor worker (unpaved) criteria. 5. NEPC (2013) NEPM - Schedule B1 Investigation Levels for Soil and Groundwater - Table 1 A(1) HILs for soil contaminants for Nickel and Zinc

Hill Laboratories Limited 28 Duke Street Frankton 320 Private Bag 3205 Hamilton 3240 New Zealand

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205

T 0508 HILL LAB (44 555 22)

Page 1 of 15

- Т +64 7 858 2000
- E mail@hill-labs.co.nz

W www.hill-laboratories.com

Certificate of Analysis

Client:	WSP New Zealand Limited	Lab No:	3252425	SPv1
Contact:	Lance Robison	Date Received:	22-Apr-2023	
	C/- WSP New Zealand Limited	Date Reported:	01-May-2023	
	PO Box 800	Quote No:	82748	
	Whakatane 3158	Order No:		
		Client Reference:	Nathan Soil	
		Submitted By:	Lance Robison	

Sample Type: Soil						
	Sample Name:	1_0.1	2_0.1	3_0.1	4_0.1	5_0.1
	Lab Number:	3252425.1	3252425.2	3252425.3	3252425.4	3252425.5
Individual Tests						
Dry Matter	g/100g as rcvd	86	88	83	84	86
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	3	3	3	5	4
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	3	2	2	3	2
Total Recoverable Copper	mg/kg dry wt	5	4	4	5	3
Total Recoverable Lead	mg/kg dry wt	3.7	2.8	2.8	3.0	3.4
Total Recoverable Nickel	mg/kg dry wt	< 2	< 2	< 2	< 2	< 2
Total Recoverable Zinc	mg/kg dry wt	20	19	23	24	23
Multiresidue Pesticides in Soi	il samples by GCMS					
Acetochlor	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Alachlor	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Aldrin	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Atrazine	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Atrazine-desethyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Atrazine-desisopropyl	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Azaconazole	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Azinphos-methyl	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Benalaxyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Bendiocarb	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Benodanil	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
alpha-BHC	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
beta-BHC	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
delta-BHC	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
gamma-BHC (Lindane)	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Bifenthrin	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Bitertanol	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Bromacil	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Bromophos-ethyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Bromopropylate	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Bupirimate	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Buprofezin	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Butachlor	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Captafol	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Captan	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Carbaryl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Carbofenothion	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Carbofuran	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007

TING LABORA

CCREDITED

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil			1		1	Ī
	Sample Name:	1_0.1	2_0.1	3_0.1	4_0.1	5_0.1
	Lab Number:	3252425.1	3252425.2	3252425.3	3252425.4	3252425.5
Multiresidue Pesticides in S	Soil samples by GCMS					
cis-Chlordane	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
rans-Chlordane	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Chlorfenvinphos	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Chlorfluazuron	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Chlorothalonil	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Chlorpropham	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Chlorpyrifos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Chlorpyrifos-methyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Chlortoluron	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Chlozolinate	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Coumaphos	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Cyanazine	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Cyfluthrin	mg/kg dry wt	< 0.009	< 0.009	< 0.009	< 0.009	< 0.009
Cyhalothrin	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Cypermethrin	mg/kg dry wt	< 0.017	< 0.017	< 0.018	< 0.018	< 0.017
Cyproconazole	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Cyprodinil	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
2,4'-DDD	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
4,4'-DDD	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
2,4'-DDE	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
4,4'-DDE	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
2,4'-DDT	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
4,4'-DDT	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Total DDT Isomers	mg/kg dry wt	< 0.07	< 0.012	< 0.012	< 0.012	< 0.012
Deltamethrin (including	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Tralomethrin)	ing/kg dry wr	\$ 0.007	\$ 0.007	\$ 0.000	\$ 0.007	\$ 0.007
Diazinon	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Dichlobenil	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Dichlofenthion	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Dichlofluanid	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Dichloran	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dichlorvos	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Dicofol	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Dicrotophos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Dieldrin	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Difenoconazole	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Dimethoate	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Dinocap	mg/kg dry wt	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08
Diphenylamine	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Diuron	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Endosulfan I	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Endosulfan II	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Endosulfan sulphate	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Endrin	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Endrin aldehyde	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Endrin ketone	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
EPN	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Ethion		< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
	mg/kg dry wt					
Etrimfos Eamphur	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Famphur	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Fenarimol	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Fenitrothion	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Fenpropathrin	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Fenpropimorph	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Fensulfothion	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007

	Sample Name:	1 0.1	2 0.1	3_0.1	4 0.1	5 0.1
	Lab Number:	3252425.1	3252425.2	3252425.3	3252425.4	3252425.5
Multiresidue Pesticides in S		5252425.1	3232423.2	3232423.3	3232423.4	5252425.5
Fenvalerate (including	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Esfenvalerate)	ing/kg dry wr	\$ 0.010	\$ 0.010	\$ 0.010	\$ 0.010	\$ 0.010
Fluazifop-butyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Fluometuron	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Flusilazole	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Fluvalinate	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Folpet	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Furalaxyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Haloxyfop-methyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Heptachlor	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Heptachlor epoxide	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Hexachlorobenzene	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Hexaconazole	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Hexazinone	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Hexythiazox	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
mazalil	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
ndoxacarb	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
odofenphos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
PBC (3-lodo-2-propynyl-n- putylcarbamate)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
sazophos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
sofenphos	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Kresoxim-methyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
_eptophos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
_inuron	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Valathion	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Vletalaxyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Vethacrifos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Vethamidophos	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Vethidathion	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Viethiocarb	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Vethoxychlor	mg/kg dry wt	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Vietolachlor	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Metribuzin	mg/kg dry wt	< 0.000	< 0.007	< 0.008	< 0.007	< 0.007
Vienphos	mg/kg dry wt	< 0.014	< 0.007	< 0.000	< 0.014	< 0.007
Volinate	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Myclobutanil	mg/kg dry wt	< 0.014	< 0.007	< 0.008	< 0.007	< 0.007
Valed		< 0.007	< 0.007	< 0.008	< 0.007	< 0.04
Nitrofen	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Nitrothal-isopropyl	mg/kg dry wt					
Norflurazon	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014 < 0.04
Omethoate	mg/kg dry wt			< 0.04	< 0.04	
Oxadiazon	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Oxychlordane	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Oxyfluorfen	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Paclobutrazol	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Parathion-ethyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Parathion-methyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Penconazole	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Pendimethalin	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Permethrin	mg/kg dry wt	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Phosmet	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Phosphamidon	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Pirimicarb	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Pirimiphos-methyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Prochloraz	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04

Sample Type: Soil						
Sa	mple Name:	1_0.1	2_0.1	3_0.1	4_0.1	5_0.1
L	ab Number:	3252425.1	3252425.2	3252425.3	3252425.4	3252425.5
Multiresidue Pesticides in Soil sa	mples by GCMS					
Procymidone	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Prometryn	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Propachlor	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Propanil	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Propazine	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Propetamphos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Propham	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Propiconazole	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Prothiofos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Pyrazophos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Pyrifenox	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Pyrimethanil	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Pyriproxyfen	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Quintozene	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Quizalofop-ethyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Simazine	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Simetryn	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Sulfentrazone	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Sulfotep	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.014	< 0.014	< 0.015	< 0.014	< 0.014
Tebuconazole	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Tebufenpyrad	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Terbacil	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Terbumeton	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Terbuthylazine	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Terbuthylazine-desethyl	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Terbutryn	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Tetrachlorvinphos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Thiabendazole	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Thiobencarb	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Tolylfluanid	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Triadimefon	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Triazophos	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Trifluralin	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
Vinclozolin	mg/kg dry wt	< 0.007	< 0.007	< 0.008	< 0.007	< 0.007
S2	mple Name:	6_0.1	7_0.1	8_0.1	9_0.1	10_0.1
	ab Number:	3252425.6	3252425.7	3252425.8	3252425.9	3252425.10
Individual Tests		0202120.0	020212017	0202120.0	0202120.0	0202120.10
	g/100g as rcvd	78	85	83	90	80
Heavy Metals, Screen Level	g, 100g do 101d	10			00	00
	malka dayut	1	3	4	3	4
Total Recoverable Arsenic	mg/kg dry wt	4	-	4	-	
Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10 3	< 0.10
	mg/kg dry wt mg/kg dry wt	2	2	2		2
Total Recoverable Copper			2.9	2.7	2	
Total Recoverable Lead Total Recoverable Nickel	mg/kg dry wt	3.4	< 2	< 2	2.6 < 2	3.2
Total Recoverable Nickel	mg/kg dry wt	< 2 24			< 2 16	
	mg/kg dry wt	24	21	15	10	17
Multiresidue Pesticides in Soil sa						.
Acetochlor	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Alachlor	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Aldrin	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
Atrazine	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Atrazine-desethyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Atrazine-desisopropyl	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015

	a	0.04	7.0.4	0.04	0.04	40.04
	Sample Name:	6_0.1	7_0.1	8_0.1	9_0.1	10_0.1
	Lab Number:	3252425.6	3252425.7	3252425.8	3252425.9	3252425.10
Multiresidue Pesticides in S	. ,					
Azaconazole	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Azinphos-methyl	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Benalaxyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Bendiocarb	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Benodanil	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
alpha-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
beta-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
delta-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
Bifenthrin	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Bitertanol	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Bromacil	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Bromophos-ethyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Bromopropylate	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Bupirimate	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Buprofezin	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Butachlor	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Captafol	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Captan	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Carbaryl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Carbofenothion	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Carbofuran	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
trans-Chlordane	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
Chlorfenvinphos	mg/kg dry wt	< 0.011	< 0.010	< 0.010	< 0.010	< 0.011
Chlorfluazuron	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Chlorothalonil	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Chlorpropham	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Chlorpyrifos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Chlorpyrifos-methyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Chlortoluron	mg/kg dry wt	< 0.000	< 0.014	< 0.000	< 0.014	< 0.000
Chlozolinate	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Coumaphos	mg/kg dry wt	< 0.000	< 0.007	< 0.000	< 0.007	< 0.000
Cyanazine	mg/kg dry wt	< 0.013	< 0.007	< 0.008	< 0.014	< 0.008
,						
Cyfluthrin	mg/kg dry wt	< 0.010	< 0.009	< 0.009	< 0.009	< 0.009
Cyhalothrin	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Cypermethrin	mg/kg dry wt	< 0.019	< 0.017	< 0.018	< 0.017	< 0.018
Cyproconazole	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
2,4'-DDD	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
4,4'-DDD	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
4,4'-DDE	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
2,4'-DDT	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
4,4'-DDT	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.07	< 0.07	< 0.07	< 0.08
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Diazinon	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Dichlobenil	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Dichlofenthion	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Dichlofluanid	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Dichloran	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dichlorvos	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Dicofol	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Dicrotophos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008

	• • • •	0.04	7.0.4	0.0.4	0.04	40.0.4
	Sample Name:	6_0.1	7_0.1	8_0.1	9_0.1	10_0.1
	Lab Number:	3252425.6	3252425.7	3252425.8	3252425.9	3252425.10
Multiresidue Pesticides in Sc	. ,		i	1		1
Dieldrin	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
Difenoconazole	mg/kg dry wt	< 0.011	< 0.010	< 0.010	< 0.010	< 0.011
Dimethoate	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Dinocap	mg/kg dry wt	< 0.09	< 0.08	< 0.08	< 0.08	< 0.09
Diphenylamine	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Diuron	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Endosulfan I	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
Endosulfan II	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
Endosulfan sulphate	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
Endrin	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
Endrin aldehyde	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
Endrin ketone	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
EPN	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Ethion	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Etrimfos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Famphur	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Fenarimol	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
enitrothion	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
enpropathrin	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Fenpropimorph	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Fensulfothion	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Fenvalerate (including Esfenvalerate)	mg/kg dry wt	< 0.011	< 0.010	< 0.010	< 0.010	< 0.011
-luazifop-butyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Fluometuron	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Iusilazole	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Iuvalinate	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
⁻ olpet	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Furalaxyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Haloxyfop-methyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Heptachlor	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.011	< 0.013
Hexaconazole	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Hexazinone	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Hexythiazox	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
mazalil	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
ndoxacarb	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
odofenphos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
PBC (3-lodo-2-propynyl-n- putylcarbamate)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
sazophos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
sofenphos	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Kresoxim-methyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
_eptophos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Linuron	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Malathion	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
/letalaxyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
/lethacrifos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
/lethamidophos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Methidathion		< 0.004	< 0.007	< 0.004	< 0.007	< 0.04
	mg/kg dry wt					
Methiocarb	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Methoxychlor	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.013
Metolachlor	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Vetribuzin	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008

Sample Type: Soil			1			
Sa	mple Name:	6_0.1	7_0.1	8_0.1	9_0.1	10_0.1
L	ab Number:	3252425.6	3252425.7	3252425.8	3252425.9	3252425.10
Multiresidue Pesticides in Soil sa	mples by GCMS					
Molinate	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Myclobutanil	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Naled	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Nitrofen	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Nitrothal-isopropyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Norflurazon	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Omethoate	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Dxadiazon	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Dxychlordane	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Dxyfluorfen	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Paclobutrazol	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Parathion-ethyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Parathion-methyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Penconazole	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Pendimethalin	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Permethrin	mg/kg dry wt	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Phosmet	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Phosphamidon	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Pirimicarb	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Pirimiphos-methyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Prochloraz	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Procymidone	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.004
Prometryn	mg/kg dry wt	< 0.000	< 0.007	< 0.000	< 0.004	< 0.004
Propachlor	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Propanil	mg/kg dry wt	< 0.000	< 0.03	< 0.03	< 0.03	< 0.000
Propazine	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
•		< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Propetamphos	mg/kg dry wt					
Propham	mg/kg dry wt mg/kg dry wt	< 0.008	< 0.007 < 0.006	< 0.008 < 0.006	< 0.007 < 0.006	< 0.008 < 0.006
Propiconazole						< 0.008
Prothiofos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	
^o yrazophos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Pyrifenox	mg/kg dry wt	< 0.011	< 0.010	< 0.010	< 0.010	< 0.011
Pyrimethanil	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Pyriproxyfen	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Quintozene	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
Quizalofop-ethyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Simazine	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Simetryn	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
Sulfentrazone	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Sulfotep	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
CMTB [2-(thiocyanomethylthio) penzothiazole,Busan]	mg/kg dry wt	< 0.015	< 0.014	< 0.015	< 0.014	< 0.015
ebuconazole	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
ebufenpyrad	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Ferbacil	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
erbumeton	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
erbuthylazine	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
erbuthylazine-desethyl	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
erbutryn	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
etrachlorvinphos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
hiabendazole	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
hiobencarb	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
olylfluanid	mg/kg dry wt	< 0.004	< 0.004	< 0.000	< 0.004	< 0.004
Triadimefon	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Triazophos	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
пасорнов	inging ary wi	- 0.000	< 0.007	.0.000	+ 0.001	- 0.000

	Sample Neme	6_0.1	7_0.1	8_0.1	9_0.1	10 0.1
	Sample Name:					
Multiresidue Pesticides in So	Lab Number:	3252425.6	3252425.7	3252425.8	3252425.9	3252425.10
			< 0.007	< 0.008	< 0.007	< 0.000
Vinclozolin	mg/kg dry wt	< 0.008	< 0.007	< 0.008	< 0.007	< 0.008
	Sample Name:	11_0.1	12_0.1	13_0.1	14_0.1	15_0.1
	Lab Number:	3252425.11	3252425.12	3252425.13	3252425.14	3252425.15
Individual Tests						
Dry Matter	g/100g as rcvd	81	84	81	87	96
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	4	4	4	3	2
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	2	2	2	3	3
Total Recoverable Copper	mg/kg dry wt	6	5	5	3	< 2
Total Recoverable Lead	mg/kg dry wt	2.8	2.7	3.2	4.1	3.2
Total Recoverable Nickel	mg/kg dry wt	< 2	< 2	< 2	< 2	< 2
Total Recoverable Zinc	mg/kg dry wt	18	19	21	27	23
Multiresidue Pesticides in So	il samples by GCMS					
Acetochlor	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Alachlor	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Aldrin	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
Atrazine	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Atrazine-desethyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Atrazine-desisopropyl	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Azaconazole	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Azinphos-methyl	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Benalaxyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Bendiocarb	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Benodanil	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
alpha-BHC	mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
beta-BHC	mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
delta-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
gamma-BHC (Lindane)	mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
Bifenthrin	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Bitertanol	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Bromacil	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Bromophos-ethyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Bromopropylate	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Bupirimate	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Buprofezin	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Butachlor	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Captafol	mg/kg dry wt	< 0.000	< 0.000	< 0.000	< 0.04	< 0.04
Captan	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Carbaryl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Carbofenothion	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Carbofuran	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.007
trans-Chlordane	mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
Chlorfenvinphos	mg/kg dry wt	< 0.012	< 0.012	< 0.011	< 0.012	< 0.009
Chlorfluazuron	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Chlorothalonil	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Chlorpropham	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Chlorpyrifos	mg/kg dry wt	< 0.013	< 0.008	< 0.008	< 0.007	< 0.007
Chlorpyrifos-methyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Chlortoluron	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Chlozolinate	mg/kg dry wt	< 0.015	< 0.008	< 0.008	< 0.014	< 0.013
	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Coumaphos		< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Cyanazine Cyfluthrin	mg/kg dry wt mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007

	Sample Name:	11_0.1	12 0.1	13_0.1	14_0.1	15_0.1
	Lab Number:	3252425.11	3252425.12	3252425.13	3252425.14	3252425.15
Multiresidue Pesticides in S		3232423.11	3232423.12	3232423.13	3232423.14	3232423.15
Cyhalothrin	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Cypermethrin	mg/kg dry wt	< 0.008	< 0.008	< 0.000	< 0.007	< 0.007
Cyproconazole	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Cyprodinil	mg/kg dry wt	< 0.013	< 0.013	< 0.013	< 0.014	< 0.007
2,4'-DDD		< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
4,4'-DDD	mg/kg dry wt mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
4,4'-DDE	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
2,4'-DDT	mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
4,4'-DDT	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.012	< 0.08	< 0.07	< 0.07
Deltamethrin (including	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Tralomethrin) Diazinon		< 0.000	< 0.000	< 0.000	< 0.007	
	mg/kg dry wt					< 0.004
Dichlobenil	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Dichlofenthion	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Dichlofluanid	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Dichloran Dichlorvos	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Dicofol	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04 < 0.007	< 0.04
Dicrotophos Dieldrin	mg/kg dry wt	< 0.008	< 0.008 < 0.012	< 0.008 < 0.013	< 0.007	< 0.007
Difenoconazole	mg/kg dry wt	< 0.012		< 0.013	< 0.012	< 0.011
	mg/kg dry wt	< 0.011	< 0.010		< 0.010	< 0.010
Dimethoate	mg/kg dry wt		< 0.015	< 0.015		< 0.013
Dinocap	mg/kg dry wt	< 0.09	< 0.08	< 0.09	< 0.08	< 0.07
Diphenylamine Diuron	mg/kg dry wt mg/kg dry wt	< 0.015	< 0.015 < 0.008	< 0.015 < 0.008	< 0.014 < 0.007	< 0.013 < 0.007
Endosulfan I		< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Endosulfan II	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
Endosulfan sulphate	mg/kg dry wt mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
Endrin	00,	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
Endrin aldehyde	mg/kg dry wt mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
Endrin ketone	mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
EPN	mg/kg dry wt	< 0.013	< 0.002	< 0.008	< 0.007	< 0.007
Ethion	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Etrimfos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Famphur	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Fenarimol	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Fenitrothion	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Fenpropathrin	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Fenpropimorph	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Fensulfothion	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Fenvalerate (including Esfenvalerate)	mg/kg dry wt	< 0.011	< 0.010	< 0.011	< 0.010	< 0.009
Fluazifop-butyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Fluometuron	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Flusilazole	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Fluvalinate	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Folpet	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Furalaxyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Haloxyfop-methyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Heptachlor	mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	< 0.012	< 0.011
Hexaconazole	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Hexazinone	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004

8			ED RJI	Hill Laboratories L I 1, 72 Grafton Ro	
	ote No mary Contact Lance Robison		Graf Auci	iand 1010, New 2	Received by: Jonas Eyskens
10.00	mitted By Lance Robison			0508 HILL LAB (4	4 555 2
1000	ent Name WSP		E	-64 7 858 2000 nail@hil-labs.co.;	
Add			W \	www.hill-laboratori	es.com
1000	akatane	Postcode 3120		CHAIN	OF CUSTODY RECORD
Pho	ne 07 3080139 Mobile	0276051390		it to	Date & Time: 21/4 0800
Ema	# lance,robison@wsp.com		/	Laboratories	Name: Jance Robison
Cha	arge To WSP			Tick II you require C to be amailed back	OC Signature:
	nt Reference Nathan Soc Ir No	1	100000	eived at Laboratories	Date & Time: Name:
Res	ults To Reports will be emailed to Primary Additional Reports will be sent as				Signature:
νŧ	imall Primary Contact 🛛 Emeil Subm		ant	dition	Temp:
	inall Other	10404 ABA 10780 000		Room Temp	Chilled Frozen (S. 4
	lther			Sample and An	alysis details checked
	ADDITIONAL INFORM	MATION		Signature:	
		Sample	Req	uested Reporting	Date:
No	Sample Name		Time	Sample Type	Tasts Required (if not as per Quote)
No. 1	Sample Name	Date	Time	Sample Type	Tests Required (If not as per Quote) Heavy Mehals Surfe +
1	1_0.1		Time	1	Heavy metals surfe +
1 2			Time	1	
1 2	1_0.1 2_0.1		Time	1	Heavy metals surfe +
1 2 3	1_0.1 2_0.1		Time	1	Heavy metals surfe +
1 2 3 4	1_0.1 2_0.1 3_0.1		Time	1	Heavy metals surfe +
1 2 3 4 5	1_0.1 2_0.1 3_0.1		Time	1	Heavy metals surfe +
1 2 3 4 5 6	1_0.1 2_0.1 3_0.1		Time	1	Heavy metals surfe +
1 2 3 4 5 6 7	1_0.1 2_0.1 3_0.1		Time	1	Heavy metals surfe +
1 2 3 4 5 6 7 8	1_0.1 2_0.1 3_0.1		Time	1	Heavy metals surfe +
1 2 3 4 5 6 7 8 9	1_0.1 2_0.1 3_0.1		Time	1	Heavy metals surfe +

Continued on next page

.

KB Barr: 40421

Page 1 of 2

No.	Sample Name	Sample Dete	Sample Time	Sample Type	Tests Required (if not as per Quote)
13	1				1
14					
15	4				
16	6.0.1				4
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32	14				
33					
34					
35					
36					
37					
38					
39					
40					

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

0508 HILL LAB (44 555 22) Т

Page 1 of 2

- Т +64 7 858 2000
- E mail@hill-labs.co.nz
- W www.hill-laboratories.com

Job Information Summary

Client: WSP New Zealand Limited Contact: Lance Robison C/- WSP New Zealand Limited PO Box 800 Whakatane 3158

Lab No:	3252425
Date Registered:	22-Apr-2023 1:24 pm
Priority:	High
Quote No:	82748
Order No:	
Client Reference:	Nathan Soil
Add. Client Ref:	
Submitted By:	Lance Robison
Charge To:	WSP New Zealand Limited
Target Date:	01-May-2023 4:30 pm

Comple

Sam	Samples							
No	Sample Name	Sample Type	Containers	Tests Requested				
1	1_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
2	2_0.1	Soil	PSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
3	3_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
4	4_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
5	5_0.1	Soil	PSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
6	6_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
7	7_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
8	8_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
9	9_0.1	Soil	PSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
10	10_0.1	Soil	PSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
11	11_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
12	12_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
13	13_0.1	Soil	PSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
14	14_0.1	Soil	PSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
15	15_0.1	Soil	PSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
16	16_0.1	Soil	cPSoil250	Heavy Metals, Screen Level; Multiresidue Pesticides in Soil samples by GCMS				
		1						

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil							
Test	Method Description	Default Detection Limit	Sample No				
Environmental Solids Sample Drying	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-16				
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-16				
Lab No: 2252425	Hill Laboratoriaa						

Sample Type: Soil								
Test	Method Description	Default Detection Limit	Sample No					
Multiresidue Pesticides in Soil samples by GCMS	Sonication extraction, GC-ECD and GC-MS analysis. In- house based on US EPA 8081 and US EPA 8270.	0.003 - 0.06 mg/kg dry wt	1-16					
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-16					

	Sample Name:	11_0.1	12 0.1	13_0.1	14_0.1	15 0.1
	Lab Number:	3252425.11	3252425.12	3252425.13	3252425.14	3252425.15
Multiresidue Pesticides in So		0202120.11	0202120.12	0202120.10	0202120.11	0202120110
Hexythiazox	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Imazalil	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Indoxacarb	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Iodofenphos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Isazophos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
sofenphos	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Kresoxim-methyl	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
_eptophos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Linuron	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Malathion	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Metalaxyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Methacrifos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Methamidophos	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Methidathion	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Methiocarb	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Methoxychlor	mg/kg dry wt	< 0.012	< 0.012	< 0.013	< 0.012	< 0.011
Metolachlor	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Metribuzin	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Mevinphos	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Molinate	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Myclobutanil	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Naled	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Nitrofen	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Nitrothal-isopropyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Norflurazon	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Omethoate	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Oxadiazon	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Oxychlordane	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Oxyfluorfen	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Paclobutrazol	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	
Parathion-ethyl	mg/kg dry wt	< 0.008	< 0.008 < 0.008	< 0.008	< 0.007	< 0.007
Parathion-methyl	mg/kg dry wt	< 0.008		< 0.008	< 0.007	< 0.007
^o enconazole ^o endimethalin	mg/kg dry wt	< 0.008 < 0.008	< 0.008 < 0.008	< 0.008 < 0.008	< 0.007 < 0.007	< 0.007 < 0.007
Permethrin	mg/kg dry wt mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Phosmet	mg/kg dry wt	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Phosphamidon	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Pirimicarb	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Pirimiphos-methyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Prochloraz	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Procymidone	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Prometryn	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Propachlor	mg/kg dry wt	< 0.004	< 0.008	< 0.008	< 0.007	< 0.007
Propanil	mg/kg dry wt	< 0.03	< 0.000	< 0.03	< 0.03	< 0.007
Propazine	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Propetamphos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Propham	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Propiconazole	mg/kg dry wt	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Prothiofos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
^o yrazophos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Pyrifenox	mg/kg dry wt	< 0.011	< 0.010	< 0.011	< 0.010	< 0.009
Pyrimethanil	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Pyriproxyfen	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Quintozene	mg/kg dry wt	< 0.015	< 0.015	< 0.015	< 0.014	< 0.013

e.	ample Name	11_0.1	12 0.1	13 0.1	14_0.1	15 0.1
	ample Name: Lab Number:	3252425.11	3252425.12	3252425.13	3252425.14	3252425.15
Multiresidue Pesticides in Soil sa		3232425.11	3232423.12	3252425.13	3232423.14	3232423.15
Quizalofop-ethyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Simazine	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Simetryn	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Sulfentrazone		< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
	mg/kg dry wt	< 0.008	< 0.04			< 0.04
Sulfotep	mg/kg dry wt			< 0.008	< 0.007	
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan] — ·		< 0.015	< 0.015	< 0.015	< 0.014	< 0.013
Tebuconazole	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Tebufenpyrad	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Terbacil	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Terbumeton	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Terbuthylazine	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Terbuthylazine-desethyl	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Terbutryn	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Tetrachlorvinphos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Thiabendazole	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Thiobencarb	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Tolylfluanid	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Triadimefon	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Triazophos	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Trifluralin	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Vinclozolin	mg/kg dry wt	< 0.008	< 0.008	< 0.008	< 0.007	< 0.007
Sa	ample Name:			16_0.1		
	Lab Number:			3252425.16		
Individual Tests						
Dry Matter	g/100g as rcvd			91		
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt			3		
Total Recoverable Cadmium	mg/kg dry wt			< 0.10		
Total Recoverable Chromium	mg/kg dry wt			3		
Total Recoverable Copper	mg/kg dry wt			< 2		
Total Recoverable Lead	mg/kg dry wt			2.6		
Total Recoverable Nickel	mg/kg dry wt			< 2		
Total Recoverable Zinc	mg/kg dry wt			17		
Multiresidue Pesticides in Soil sa						
Acetochlor	mg/kg dry wt			< 0.007		
Alachlor	mg/kg dry wt			< 0.006		
Aldrin	mg/kg dry wt			< 0.011		
Atrazine	mg/kg dry wt			< 0.007		
Atrazine-desethyl	mg/kg dry wt			< 0.007		
Atrazine-desisopropyl	mg/kg dry wt			< 0.007		
Arazine-desisopropyi	mg/kg dry wt			< 0.014		
Azaconazole Azinphos-methyl						
	mg/kg dry wt			< 0.014		
Benalaxyl	mg/kg dry wt			< 0.004		
Bendiocarb	mg/kg dry wt			< 0.007		
Benodanil	mg/kg dry wt			< 0.014		
alpha-BHC	mg/kg dry wt			< 0.011		
beta-BHC	mg/kg dry wt			< 0.011		
delta-BHC	mg/kg dry wt			< 0.011		
gamma-BHC (Lindane)	mg/kg dry wt			< 0.011		
Bifenthrin	mg/kg dry wt			< 0.004		
Bitertanol	mg/kg dry wt			< 0.014		
Bromacil	mg/kg dry wt			< 0.007		
Bromophos-ethyl	mg/kg dry wt			< 0.007		
Bromopropylate	mg/kg dry wt			< 0.007		

Sample Type: Soil		
	ample Name:	16_0.1
	_ab Number:	3252425.16
Multiresidue Pesticides in Soil sa		
Bupirimate	mg/kg dry wt	< 0.007
Buprofezin	mg/kg dry wt	< 0.007
Butachlor	mg/kg dry wt	< 0.007
Captafol	mg/kg dry wt	< 0.04
Captan	mg/kg dry wt	< 0.014
Carbaryl	mg/kg dry wt	< 0.007
Carbofenothion	mg/kg dry wt	< 0.007
Carbofuran	mg/kg dry wt	< 0.007
cis-Chlordane	mg/kg dry wt	< 0.011
trans-Chlordane	mg/kg dry wt	< 0.011
Chlorfenvinphos	mg/kg dry wt	< 0.010
Chlorfluazuron	mg/kg dry wt	< 0.007
Chlorothalonil	mg/kg dry wt	< 0.007
Chlorpropham	mg/kg dry wt	< 0.014
Chlorpyrifos	mg/kg dry wt	< 0.007
Chlorpyrifos-methyl	mg/kg dry wt	< 0.007
Chlortoluron	mg/kg dry wt	< 0.014
Chlozolinate	mg/kg dry wt	< 0.007
Coumaphos	mg/kg dry wt	< 0.014
Cyanazine	mg/kg dry wt	< 0.007
Cyfluthrin	mg/kg dry wt	< 0.009
Cyhalothrin	mg/kg dry wt	< 0.007
Cypermethrin	mg/kg dry wt	< 0.017
Cyproconazole	mg/kg dry wt	< 0.014
Cyprodinil	mg/kg dry wt	< 0.007
2,4'-DDD	mg/kg dry wt	< 0.011
4,4'-DDD	mg/kg dry wt	< 0.011
2,4'-DDE	mg/kg dry wt	< 0.011
4,4'-DDE	mg/kg dry wt	< 0.011
2,4'-DDT	mg/kg dry wt	< 0.011
4,4'-DDT	mg/kg dry wt	< 0.011
Total DDT Isomers	mg/kg dry wt	< 0.07
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.007
Diazinon	mg/kg dry wt	< 0.004
Dichlobenil	mg/kg dry wt	< 0.007
Dichlofenthion	mg/kg dry wt	< 0.007
Dichlofluanid	mg/kg dry wt	< 0.007
Dichloran	mg/kg dry wt	< 0.03
Dichlorvos	mg/kg dry wt	< 0.010
Dicofol	mg/kg dry wt	< 0.04
Dicrotophos	mg/kg dry wt	< 0.007
Dieldrin	mg/kg dry wt	< 0.011
Difenoconazole	mg/kg dry wt	< 0.010
Dimethoate	mg/kg dry wt	< 0.014
Dinocap	mg/kg dry wt	< 0.08
Diphenylamine	mg/kg dry wt	< 0.014
Diuron	mg/kg dry wt	< 0.007
Endosulfan I	mg/kg dry wt	< 0.011
Endosulfan II	mg/kg dry wt	< 0.011
Endosulfan sulphate	mg/kg dry wt	< 0.011
Endrin Endrin aldabuda	mg/kg dry wt	< 0.011
Endrin aldehyde	mg/kg dry wt	< 0.011
Endrin ketone EPN	mg/kg dry wt mg/kg dry wt	< 0.011 < 0.007
Ethion	mg/kg dry wt	< 0.007
	mg/kg ury wt	► 0.001

Sample Type: Soil		
	Sample Name:	16_0.1
	Lab Number:	3252425.16
Multiresidue Pesticides in Soi	samples by GCMS	
Etrimfos	mg/kg dry wt	< 0.007
Famphur	mg/kg dry wt	< 0.007
Fenarimol	mg/kg dry wt	< 0.007
Fenitrothion	mg/kg dry wt	< 0.007
Fenpropathrin	mg/kg dry wt	< 0.007
Fenpropimorph	mg/kg dry wt	< 0.007
Fensulfothion	mg/kg dry wt	< 0.007
Fenvalerate (including Esfenvalerate)	mg/kg dry wt	< 0.010
Fluazifop-butyl	mg/kg dry wt	< 0.007
Fluometuron	mg/kg dry wt	< 0.007
Flusilazole	mg/kg dry wt	< 0.007
Fluvalinate	mg/kg dry wt	< 0.006
Folpet	mg/kg dry wt	< 0.014
Furalaxyl	mg/kg dry wt	< 0.004
Haloxyfop-methyl	mg/kg dry wt	< 0.007
Heptachlor	mg/kg dry wt	< 0.011
Heptachlor epoxide	mg/kg dry wt	< 0.011
Hexachlorobenzene	mg/kg dry wt	< 0.011
Hexaconazole	mg/kg dry wt	< 0.007
Hexazinone	mg/kg dry wt	< 0.004
Hexythiazox	mg/kg dry wt	< 0.04
Imazalil	mg/kg dry wt	< 0.04
Indoxacarb	mg/kg dry wt	< 0.007
lodofenphos	mg/kg dry wt	< 0.007
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.04
Isazophos	mg/kg dry wt	< 0.007
Isofenphos	mg/kg dry wt	< 0.004
Kresoxim-methyl	mg/kg dry wt	< 0.004
Leptophos	mg/kg dry wt	< 0.007
Linuron	mg/kg dry wt	< 0.007
Malathion	mg/kg dry wt	< 0.007
Metalaxyl	mg/kg dry wt	< 0.007
Methacrifos	mg/kg dry wt	< 0.007
Methamidophos	mg/kg dry wt	< 0.04
Methidathion	mg/kg dry wt	< 0.007
Methiocarb	mg/kg dry wt	< 0.007
Methoxychlor	mg/kg dry wt	< 0.011
Metolachlor	mg/kg dry wt	< 0.006
Metribuzin	mg/kg dry wt	< 0.007
Mevinphos Melinete	mg/kg dry wt	< 0.014
Molinate	mg/kg dry wt	< 0.014
Myclobutanil	mg/kg dry wt	< 0.007
Naled	mg/kg dry wt	< 0.04
Nitrofen	mg/kg dry wt	< 0.014
Nitrothal-isopropyl	mg/kg dry wt	< 0.007
Norflurazon	mg/kg dry wt	< 0.014
Omethoate	mg/kg dry wt	< 0.04
Oxadiazon	mg/kg dry wt	< 0.007
Oxychlordane	mg/kg dry wt	< 0.004
Oxyfluorfen	mg/kg dry wt	< 0.004
Paclobutrazol	mg/kg dry wt	< 0.007
Parathion-ethyl	mg/kg dry wt	< 0.007
Parathion-methyl	mg/kg dry wt	< 0.007
Penconazole	mg/kg dry wt	< 0.007

Sample Type: Soil		
Sai	nple Name:	16_0.1
	ab Number:	3252425.16
Multiresidue Pesticides in Soil sar		
Pendimethalin	mg/kg dry wt	< 0.007
Permethrin	mg/kg dry wt	< 0.003
Phosmet	mg/kg dry wt	< 0.007
Phosphamidon	mg/kg dry wt	< 0.007
Pirimicarb	mg/kg dry wt	< 0.007
Pirimiphos-methyl	mg/kg dry wt	< 0.007
Prochloraz	mg/kg dry wt	< 0.04
Procymidone	mg/kg dry wt	< 0.007
Prometryn	mg/kg dry wt	< 0.004
Propachlor	mg/kg dry wt	< 0.007
Propanil	mg/kg dry wt	< 0.03
Propazine	mg/kg dry wt	< 0.004
Propetamphos	mg/kg dry wt	< 0.007
Propham	mg/kg dry wt	< 0.007
Propiconazole	mg/kg dry wt	< 0.006
Prothiofos	mg/kg dry wt	< 0.007
Pyrazophos	mg/kg dry wt	< 0.007
Pyrifenox	mg/kg dry wt	< 0.010
Pyrimethanil	mg/kg dry wt	< 0.007
Pyriproxyfen	mg/kg dry wt	< 0.007
Quintozene	mg/kg dry wt	< 0.014
Quizalofop-ethyl	mg/kg dry wt	< 0.007
Simazine	mg/kg dry wt	< 0.007
Simetryn	mg/kg dry wt	< 0.007
Sulfentrazone	mg/kg dry wt	< 0.04
Sulfotep	mg/kg dry wt	< 0.007
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.014
Tebuconazole	mg/kg dry wt	< 0.007
Tebufenpyrad	mg/kg dry wt	< 0.004
Terbacil	mg/kg dry wt	< 0.007
Terbumeton	mg/kg dry wt	< 0.007
Terbuthylazine	mg/kg dry wt	< 0.004
Terbuthylazine-desethyl	mg/kg dry wt	< 0.007
Terbutryn	mg/kg dry wt	< 0.007
Tetrachlorvinphos	mg/kg dry wt	< 0.007
Thiabendazole	mg/kg dry wt	< 0.04
Thiobencarb	mg/kg dry wt	< 0.007
Tolylfluanid	mg/kg dry wt	< 0.004
Triadimefon	mg/kg dry wt	< 0.007
Triazophos	mg/kg dry wt	< 0.007
Trifluralin	mg/kg dry wt	< 0.007
Vinclozolin	mg/kg dry wt	< 0.007
	-	

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-16
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-16

Sample Type: Soil							
Test	Method Description	Default Detection Limit	Sample No				
Multiresidue Pesticides in Soil samples by GCMS	Sonication extraction, GC-ECD and GC-MS analysis. In-house based on US EPA 8081 and US EPA 8270.	0.003 - 0.06 mg/kg dry wt	1-16				
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-16				

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 24-Apr-2023 and 01-May-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

unin

Kim Harrison MSc Client Services Manager - Environmental